ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • CO2 emissions; Manufacturing industries; Panel data model  (1)
  • biodiversity estimation  (1)
  • English  (2)
  • 2020-2022  (1)
  • 2015-2019  (1)
  • 2010-2014
  • 2005-2009
  • 1
    facet.materialart.
    Unknown
    Springer Berlin Heidelberg | Berlin/Heidelberg
    Publication Date: 2021-03-29
    Description: This study evaluates and compares the trends in CO2 emissions for the manufacturing industries of three countries: two developed countries (Germany and Sweden) that have applied several measures to promote a shift towards a low-carbon economy and one developing country (Colombia) that has shown substantial improvements in the reduction of CO2 emissions. This analysis is conducted using panel data cointegration techniques to infer causality between CO2 emissions, production factors and energy sources. The results indicate a trend of producing more output with less pollution. The trends for these countries’ CO2 emissions depend on investment levels, energy sources and economic factors. Furthermore, the trends in CO2 emissions indicate that there are emission level differences between the two developed countries and the developing country. Moreover, the study confirms that it is possible to achieve economic growth and sustainable development while reducing greenhouse gas emissions, as Germany and Sweden demonstrate. In the case of Colombia, it is important to encourage a reduction in CO2 emissions through policies that combine technical and economic instruments and incentivise the application of new technologies that promote clean and environmentally friendly processes.
    Keywords: CO2 emissions; Manufacturing industries; Panel data model ; 551 ; Environment; Climate Change; Climate Change Impacts; Oceanography; Geography (general); Regional/Spatial Science; Nature Conservation
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-01
    Description: Species identification using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) data strongly relies on reference libraries to differentiate species. Because comprehensive reference libraries, especially for metazoans, are rare, we explored the accuracy of unsupervised diversity estimations of communities using MALDI-TOF MS data in the absence of reference libraries to provide a method for future application in ecological research. To discover the best analysis strategy providing high congruence with true community structures, we carried out a simulation with more than 30,000 analyses using different combinations of data transformations, dimensionality reductions, and cluster algorithms. Species profile, Hellinger, and presence/absence transformations were applied to raw data and dimensions were reduced using principal component analysis (PCA), t-distributed stochastic neighbor embedding, and uniform manifold approximation and projection. To estimate biodiversity, data were clustered making use of partitioning around medoids, model-based clustering, and K-means clustering. The analyses were carried out on published mass spectrometry data of harpacticoid copepods. Most successful combinations (Hellinger transformation + PCA or raw data + partitioning around medoids) returned good values even for difficult species distributions containing numerous singleton species. Nevertheless, errors occurred most frequently because of such singleton taxa. Hence, replicative sampling in wide sampling areas for analysis is emphasized to increase the minimum number of specimens per species, thus reducing putative sources of errors. Our results demonstrate that MALDI-TOF MS data can be used to accurately estimate the biodiversity of unknown communities using unsupervised learning methods. The provided approach allows the biodiversity comparison of sampled regions for which no reference libraries are available. Hence, especially data on groups which demand a time-consuming identification or are highly abundant can be analyzed within short working time, accelerating ecological studies.
    Keywords: 577 ; biodiversity estimation ; metazoans ; methods
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...