ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (18)
  • 2020-2024  (9)
  • 2020-2023  (4)
  • 2020-2022  (5)
Collection
Language
  • English  (18)
Years
Year
  • 1
    Publication Date: 2021-09-09
    Description: We have installed 19 new Global Navigation Satellite System (GNSS) markers in the Hindu Kush (NE-Afghanistan) and the North Pamir front (Alai valley) and measured a total of 25 new and existing markers, if possible annually between 2014 and 2020 in survey mode. The stations are positioned along three profiles crossing the NE-striking Panjsheer fault and N-striking Badakhshan fault in the Hindu Kush, and the E-striking Pamir thrust system at the Trans Alai Range. The Hindu Kush survey data are the first of their kind in Afghanistan. The Pamir profile densifies a 1 Hz-GNSS profile that was installed in the Altyndara valley in 2013-2015; the GNSS time-series are affected by the 2015 Mw7.2 Sarez, Central Pamir, earthquake and probably the 2016 Mw6.4 Sary-Tash earthquake. The data are presented in receiver independent exchange (RNX) format and complemented by logsheets, field photos and a technical report describing the surveys in more detail.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-23
    Description: Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (〉=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-18
    Description: CaTeNA – Climatic and Tectonic Natural Hazards in Central Asia – is an interdisciplinary, international project funded by the German Ministry of Education and Research to study natural hazards in Central Asia. Central Asia is one of the most tectonically active regions of the world and is influenced by both the west wind zone and monsoon. CaTeNA is examining the two most serious natural hazards arising from these conditions: Earthquakes and mass movements. The project goal is to better understand the underlying processes and triggering factors and to better estimate the resulting risks. For this purpose, CaTeNA localises tectonic faults and determines deformation rates and their changes. Focus is put on two of the most active fault systems, the Main Pamir Thrust and the Darvaz Fault crossing Tajikistan and Kyrgyzstan. We try to estimate recurrence intervals of large earthquakes and to understand their relationship to mass movements using paleo-seismology, geomorphology and remote sensing. The current deformation field is characterised and quantified using the methods of space geodesy and seismology. The results will be incorporated into the openly accessible Central Asian Tectonic Database developed within the project, making it accessible to the public, stakeholders and decision-makers. They form the basis for a more accurate estimation of the risk for earthquakes and landslides. Another important project goal is the development and implementation of a dynamic risk assessment for landslides, including high-resolution, model-based precipitation and snowmelt maps. This allows for an improved estimation of the effects of geological hazards on inhabited areas and traffic infrastructure. Direct and efficient risk communication is achieved through interactive visualisation based on a dynamic multilingual web GIS platform. This is an essential step on the path to an early-warning system that takes into account the most important triggering factors. This data repository provides pdf files and recorded videos of talks presented during the final online workshop of the project.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/pdf
    Format: video/mp4
    Format: application/vnd.openxmlformats-officedocument.presentationml.slideshow
    Format: application/pdf
    Format: video/mp4
    Format: video/mp4
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-20
    Description: Using E-W and vertical deformation-rate maps derived from radar interferometric time-series, we analyze the deformation field of an entire orogenic segment, i.e., the Tajik depression and its adjoining mountain belts, Tian Shan, Pamir, and Hindu Kush. The data-base consists of 900+ radar scenes acquired over 2.0–4.5 years and global navigation satellite system measurements. The recent, supra-regional kinematics is visualized in an unprecedented spatio-temporal resolution. We confirm the westward collapse of the Pamir-Plateau crust, inverting the Tajik basin into a fold-thrust belt with shortening rates decaying westward from ∼15 to 2 mm/yr. Vertical rates in the Hindu Kush likely record slab-dynamic effects, i.e., the progressive break-off of the Hindu Kush slab. At least 10 mm/yr of each, uplift and westward motion occur along the western edge of the Pamir Plateau, outlining the crustal-scale ramp along which the Pamir Plateau overrides the Tajik depression. The latter shows a combination of basin-scale tectonics, halokinesis, and seasonal/weather-driven near-surface effects. Abrupt ∼6 mm/yr horizontal-rate changes occur across the kinematically-linked dextral Ilyak strike-slip fault, bounding the Tajik fold-thrust belt to the north, and the Babatag backthrust, the major thrust of the fold-thrust belt, located far west in the belt. The sharp rate decay across the Ilyak fault indicates a locking depth of ≤1 km. The Hoja Mumin salt fountain is spreading laterally at ≤350 mm/yr. On the first-order, the modern 20–5 and fossil (since ∼12 Ma) 12–8 mm/yr shortening rates across the fold-thrust belt correspond.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-11-19
    Description: Interferometric East and Up rate maps based on time-series analysis of ~5 years of Sentinel-1 radar data provide an unprecedented spatial (~400 m) resolution of the recend surface deformation of the Tajik fold-and-thrust-belt and the greater Pamir area. Among other the data exhibit E-W shortening in the fold-thrust-belt, slip activity of the Babadag thrust fault and the Ilyak strike-slip fault, westward Pamir escape tectonics, halokinesis and near-surface, water-driven effects. Observations and methodology are discussed at length in Metzger et al., 2021 (under Review). The zip-folder contains 1) the framewise rates and uncertainties and corresponding line-of-sight (LOS) information, all labelled by frame numbers, 2) the interpolated north rates based on Eurasian-fixed GNSS and 3) the concatenated and decomposed east and up rates in a Eurasian-fixed reference frame. A GMT script (Wessel & Smith, 2013, v6.0.0) and corresponding Figures serve as an example on how to plot the data.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-06
    Description: Geodetic, seismological, gravimetric, and geomorphic proxies have widely been used to understand the behavior of the shallow portion of subduction megathrusts and answer questions related to seismic asperities: Where are they located, and how large are they? How close are they to failure, and how strong are they coupled? Our current knowledge of the kinematics and dynamics of megathrust earthquakes is limited due to their offshore location, and that our observations only cover a fraction of one megathrust earthquake cycle. The frictional-elastoplastic interaction between the interface and its overriding wedge causes variable surface strain signals such that the wedge strain pattern may reveal the mechanical state of the interface. We here contribute to this discussion using observations and interpretations of controlled analog megathrust experiments highlighting the variability of deformation signals in subduction zones. To examine the interaction, we investigate seismotectonic scale models representing a seismically heterogenous interface and capture the model’s surface displacements by employing a “laboratory-geodetic” method with high spatio-temporal resolution. Our experiments generate physically self‐consistent, analog megathrust earthquake ruptures over multiple seismic cycles at laboratory scale to study the interplay between short-term elastic and long-term permanent deformation. Our results demonstrate that frictional-elastoplastic interaction partitions the upper plate into a trench-parallel and -perpendicular strain domain, experiencing opposite strain (contraction vs. extension) during the co- and interseismic phase of the seismic cycle. Moreover, the pattern differs in the off- and onshore segments of the upper plate. This implies that the seismic potential of the shallow (offshore) portion of the megathrust may be underrepresented if only onshore observations are included in the estimate. However, our models suggest that, in the case of strong frictional contrast (velocity weakening vs. strengthening) on the interface, the short-term, onshore strain pattern (dominated by elastic deformation) may suffice to map the frictional heterogeneity of the shallow interface along strike. Finally, the frictional heterogeneity of the shallow interface is well reflected by the permanent surface strain observed offshore and partially in the strain observed at the coastal region. The observed along-trench segmentation predicted by our models is reasonably compatible with short-term, elastic geodetic observations and permanent geomorphic features in nature.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-06
    Description: Large earthquakes impose differential stresses in the crust and upper mantle that are transiently relaxed during the postseismic phase mostly due to afterslip on the fault interface, viscoelastic relaxation in the lower crust and upper mantle, and poroelastic rebound in the upper crust. During the last years, the wealth of geophysical and geodetic observations, as well as great effort in forward and inverse modelling have allowed a better comprehension of the role of these mechanisms during the postseismic period. However, it is still an open question to what extent postseismic processes contribute to the surface deformation signal, especially during the early postseismic period. In this study, we use GNSS and InSAR observations collected in the first 48 days following the 2010 Maule earthquake in Chile along with a model approach that integrates afterslip, poroelasticity, and temperature-controlled power-law (non-linear viscosity) rheology. The afterslip distribution is obtained from a geodetic data inversion after removing the poro-viscoelastic component by forward modelling to the geodetic data. We find that our model approach explains the geodetic cumulative signal 14% better than a pure elastic model inverting for afterslip. This improvement is mainly produced by the better fit to the geodetic signal at the volcanic and back-arc regions due to the inclusion of non-linear viscoelastic processes, which can explain 〉 60% of the observed surface displacements in these regions. We also show that poroelastic processes play a significant role locally, specifically near the region where the coseismic slip was largest. Here, poroelastic processes explain most of the cumulative observed GNSS uplift signal and produce surface landward patterns that affect the horizontal GNSS component by up to 15% in the opposite direction. If poroelastic processes are ignored, our results reveal that the resulting afterslip amplitude is both amplified and suppressed by up to 40% in regions of ~50 x 50 km2. Our findings have implications for the calculation of the postseismic slip budget, and therefore the seismic hazard assessment of future earthquakes.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-05
    Description: Megathrust earthquakes impose changes of differential stress and pore pressure in the lithosphere-asthenosphere system that are transiently relaxed during the postseismic period primarily due to afterslip, viscoelastic and poroelastic processes. Especially during the early postseismic phase, however, the relative contribution of these processes to the observed surface deformation is unclear. To investigate this, we use geodetic data collected in the first 48 days following the 2010 Maule earthquake and a poro-viscoelastic forward model combined with an afterslip inversion. This model approach fits the geodetic data 14% better than a pure elastic model. Particularly near the region of maximum coseismic slip, the predicted surface poroelastic uplift pattern explains well the observations. If poroelasticity is neglected, the spatial afterslip distribution is locally altered by up to ±40%. Moreover, we find that shallow crustal aftershocks mostly occur in regions of increased postseismic pore-pressure changes, indicating that both processes might be mechanically coupled.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-12
    Description: At the northwestern tip of the India‐Asia collision zone, the Pamir orocline overrides the Tajik Depression and the Tarim Basin and collides with the Tian Shan. Currently, the Pamir's northern edge exhibits localized shortening rates of 13‐19 mm/yr. While the eastern Pamir and the Tarim Basin move northward nearly en‐block, north‐south shortening decreases westward along the Pamir front into the Tajik Depression. In the northeastern Tajik Depression, the wedge‐shaped crustal sliver of the Peter the First Range is squeezed between the dextral‐transpressive Vakhsh and the sinistral‐transpressive Darvaz faults. GPS data collected along two densely surveyed profiles detail the kinematics of north‐south shortening and westward lateral extrusion in the northwestern Pamir. 2016 campaign data suggest a short‐duration dextral‐slip activation of the Darvaz fault, which we interpret as a far‐field effect triggered by the 2015, Mw7.2 Sarez, Central Pamir earthquake. 2013‐2015 interseismic GPS velocities and kinematic modeling show that the Darvaz fault zone accommodates ~15 mm/yr sinistral shear and ~10 mm/yr fault‐normal extension below a locking depth of 9.0 +0.4/‐1.1 km. The Vakhsh fault shows shortening rates of 15 +4/‐2 mm/yr and dextral shear rates of 16 +3/‐4 mm/yr. Jointly, these faults accommodate NW‐SE shortening and southwestward material flow out of the Peter the First Range into the Tajik Depression. Together with seismic and geologic data, our and published geodetic surveys showcase the prolonged interaction of shortening and lateral material flow out of a plateau margin.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...