ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • English  (2)
  • Spanish
Collection
Keywords
Language
  • English  (2)
  • Spanish
Years
  • 1
    Publication Date: 2022-04-01
    Description: Observations by the Magnetospheric Multiscale spacecraft (MMS) of an unusual layer, located between the dayside magnetosheath and the magnetosphere, alternating with encounters with the magnetosheath during an extended time period between December 31, 2015 and January 01, 2016, when the interplanetary magnetic field was strongly southward and the Earth's dipole tilt large and negative, are presented. It appears to have been magnetically connected to both magnetosphere and magnetosheath. The layer appears to be located mostly on closed field lines and was bounded by a rotational discontinuity (RD) at its magnetosheath edge and by the magnetosphere on its earthward side. A separatrix layer, with heated magnetosheath electrons streaming unidirectionally along the field lines, was present sunward of the RD. We infer that the layer was started by a dominant reconnection site well north of the spacecraft and that it may have gained additional width, from a large drop in solar wind density and ram pressure, which preceded the beginning of the event by more than an hour. Relative to the magnetosheath, in which the magnetic field was strongly southward, this unusual layer was characterized by a less southward, more dawnward magnetic field of lower magnitude. The plasma density and flow speed in the region were lower than in the magnetosheath, albeit with Alfvénic jetting occurring at the magnetosheath edge as well as at the magnetospheric edge of the layer. The closing of the magnetic field lines requires the existence of another reconnection site, located southward/tailward of MMS.
    Description: Key Points: Magnetopause encounter for strongly southward interplanetary magnetic field, low solar wind Alfvén Mach number, and large dipole tilt. Persistent and broad magnetopause layer with magnetospheric O+ and heated magnetosheath plasma. Inferred dominant reconnection site near northern cusp, far from the Magnetospheric Multiscale spacecraft location.
    Description: MPE
    Description: NASA http://dx.doi.org/10.13039/100000104
    Description: Norwegian Research Council http://dx.doi.org/10.13039/501100005416
    Keywords: ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-18
    Description: India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015–2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m−3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...