ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:523  (3)
  • English  (3)
  • Romanian
  • 2020-2023  (3)
  • 1995-1999
Collection
Language
  • English  (3)
  • Romanian
Years
Year
  • 1
    Publication Date: 2022-03-24
    Description: Analysis of Mars Atmosphere and Volatile Evolution (MAVEN)/Supra‐Thermal And Thermal Ion Composition observations in the Martian upper atmosphere, bounded at higher altitudes by the shocked solar wind, shows that the draping of interplanetary magnetic field penetrates down to low altitudes (∼200−250 km) and governs dynamics of the ionosphere. The upper ionospheric plasma is driven into motion flowing around Mars similar to the shocked solar wind in the adjacent magnetosheath. Such a fluid‐like motion is accompanied by ion acceleration caused by the bending of the magnetic field, leading to ion extraction and finally to ion pickup. Extraction of ions and their acceleration produces a recoil effect of the bulk ionosphere in the opposite direction. This provides a strong asymmetry in ion dynamics in two different hemispheres, accompanied by wrapping of the magnetic field lines around Mars and respective reconnection.
    Description: Plain Language Summary: Although the Martian magnetosphere is hybrid and contains components of the induced and intrinsic magnetosphere, is possible to display these components by using the specific coordinate systems. Here we study the properties of the induced magnetosphere using the data obtained by MAVEN spacecraft. The interplanetary magnetic field penetrates deep into the Martian ionosphere draping around Mars and drive to the motion dense ionospheric plasma. Draping features and the induced plasma motions occur different in two hemispheres determined by the direction of the motional electric field in the solar wind. Ion acceleration and extraction is accompanied by a recoil effect that leads to a shift and asymmetry of the ionosphere.
    Description: Key Points: Draping of the interplanetary magnetic field around Mars penetrates deep to the ionosphere enveloping the planet and driving the ionosphere to the bulk motion. Draping and motion of the ionospheric plasma is characterized by asymmetry by the direction of the motional electric field in solar wind. Ion acceleration and extraction from the ionosphere is accompanied by a shift of the bulk ionosphere in the opposite direction.
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: DFG http://dx.doi.org/10.13039/501100001659
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-24
    Description: Since 2012 August, the Radiation Assessment Detector (RAD) on the Curiosity rover has been characterizing the Martian surface radiation field which is essential in preparation for future crewed Mars missions. RAD observed radiation dose is influenced by variable topographical features as the rover traverses through the terrain. In particular, while Curiosity was parked near a butte in the Murray Buttes area, we find a decrease of the dose rate by (5 ± 1)% as 19% of the sky was obstructed, versus 10% in an average reference period. Combining a zenith‐angle‐dependent radiation model and the rover panoramic visibility map leads to a predicted reduction of the downward dose by ∼12% due to the obstruction, larger than the observed decrease. With the hypothesis that this difference is attributable to albedo radiation coming from the butte, we estimate the (flat‐terrain) albedo radiation to be about 19% of the total surface dose.
    Description: Plain Language Summary: Interplanetary space is filled with energetic particles that can affect the health of astronauts, for example, by causing late‐arising cancer and possibly hereditary diseases. Mars lacks a global magnetic field and its atmosphere is very thin compared to Earth's. Thus its surface is exposed to such space radiation which presents risks to future humans on Mars. Mitigation strategies could include using natural geological structures on Mars, for example, cave skylights and lava tubes and even simple buttes, for protection. The Radiation Assessment Detector (RAD) on the Curiosity rover has observed a decrease of the radiation absorbed dose rate by (5 ± 1)% while Curiosity was parked near a butte. This provides the first direct illustration that Mars's surface features may serve as potential radiation shelters for future missions. However, when exploiting such shielding possibilities, the secondary radiation generated in the terrain of Mars that is, emitted backwards must also be considered. Combining the RAD observation with a radiation transport model, we derive such “reflected” radiation dose on a flat terrain to be about 19% of the total surface dose.
    Description: Key Points: The Martian surface radiation is influenced by topographical features. The surface downward radiation dose of particles traversing through the atmosphere depends on the zenith angle. The surface upward radiation dose is about 19% of the total dose.
    Description: Strategic Priority Program of CAS
    Description: NSFC
    Description: CNSA pre‐research project on civil aerospace technologies
    Description: NASA, Jet Propulsion Laboratory (JPL) http://dx.doi.org/10.13039/100006196
    Description: Deutsches Zentrum für Luft‐und Raumfahrt (DLR) http://dx.doi.org/10.13039/501100002946
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-28
    Description: In the area of Arcadia Planitia in the Northern hemisphere of Mars, mounds indicating fluid and sediment emissions have been already recognized. Here, we show that through fractal and fracture‐spacing analyses of a large vent population it is possible to infer the mechanical layering of the underlying subsurface. Our work includes the mapping of an entire population of 9,028 vents over an area of 122,000 km2. The analysis of mound distribution at the surface led to the formulation of inferences about the subsurface feeding conduits, and to the identification of three mechanical discontinuities at c. 4–5, c. 14–23, and c. 50–55 km. This evidence matches the mechanical stratigraphy recorded by the InSight NASA mission, and is in agreement with independent previous subsurface global modeling, supporting our conclusions.
    Description: Plain Language Summary: The Martian northern hemisphere displays mounds interpreted to be the result of sediment and water erupting onto the surface. We analyzed the mounds spatial distribution and found patterns that reflects the extent at depth of the subsurface conduits that fed those mounds (array of fractures, i.e., high permeability pathways) allowing the sediment and water upwelling. These conduits thus connect the surface to the source of the erupted materials at depth. These source levels are located at the base of layers characterized by mechanical properties different from the adjacent ones (e.g., loose sediments vs. crystalline bedrock). Such layers are hence referred as mechanical discontinuities. We identified three discontinuities: at c. 4–5, c. 14–23, and c. 50–55 km. Our outcomes match the mechanical stratigraphy recorded by the InSight NASA mission, and is in agreement with independent previous subsurface global modeling, supporting our conclusions.
    Description: Key Points: We present a complete mapping of a large vent population in the Arcadia Planitia region of the northern plains of Mars. We reconstructed the subsurface mechanical layering underlying the vent field using spatial distribution analysis. These analyses proved to be efficient and open the possibility of collecting subsurface rheological data from areas beyond InSight reach.
    Description: H2020 Excellent Science (H2020 Priority Excellent Science) http://dx.doi.org/10.13039/100010662
    Description: DLR Management Board Young Research Group Leader Program
    Description: Executive Board Member for Space Research and Technology
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...