ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (2)
  • 2000-2004  (2)
  • 1980-1984
  • 1945-1949
  • 2000  (2)
  • Reading room  (2)
Collection
  • Books  (2)
Language
Years
  • 2000-2004  (2)
  • 1980-1984
  • 1945-1949
Year
Classification
Branch Library
Reading Room Location
  • 1
    Call number: 11/M 01.0114
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The review chapters in this volume were the basis for a short course on sulfate minerals sponsored by the Mineralogical Society of America (MSA) November 11-12, 2000 in Tahoe City, California, prior to the Annual Meeting of MSA, the Geological Society of America, and other associated societies in nearby Reno, Nevada. The conveners of the course (and editors of this volume of Reviews in Mineralogy and Geochemistry), Alpers, John Jambor, and Kirk Nordstrom, also organized related topical sessions at the GSA meeting on sulfate minerals in both hydrothermal and low-temperature environments. Sulfate is an abundant and ubiquitous component of Earth's lithosphere and hydrosphere. Sulfate minerals represent an important component of our mineral economy, the pollution problems in our air and water, the technology for alleviating pollution, and the natural processes that affect the land we utilize. Vast quantities of gypsum are consumed in the manufacture of wallboard, and calcium sulfates are also used in sculpture in the forms of alabaster (gypsum) and papier-mache (bassanite). For centuries, AI-sulfate minerals, or "alums," have been used in the tanning and dyeing industries, and these sulfate minerals have also been a minor source of aluminum metal. Barite is used extensively in the petroleum industry as a weighting agent during drilling, and celestine (also known as "celestite") is a primary source of strontium for the ceramics, metallurgical, glass, and television face-plate industries. Jarosite is a major waste product of the hydrometallurgical processing of zinc ores and is used in agriculture to reduce alkalinity in soils. At many mining sites, the extraction and processing of coal or metal-sulfide ores (largely for gold, silver, copper, lead, and zinc) produce waste materials that generate acid-sulfate waters rich in heavy metals, commonly leading to contamination of water and sediment. Concentrated waters associated with mine wastes may precipitate a variety of metal-sulfate minerals upon evaporation, oxidation, or neutralization. Some of these sulfate minerals are soluble and store metals and acidity only temporarily, whereas others are insoluble and improve water quality by removing metals from the water column. There is considerable scientific interest in the mineralogy and geochemistry of sulfate minerals in both high-temperature (igneous and hydrothermal) and low-temperature (weathering and evaporite) environments. The physical scale of processes affected by aqueous sulfate and associated minerals spans from submicroscopic reactions at mineral-water interfaces to global issues of oceanic cycling and mass balance, and even to extraterrestrial applications in the exploration of other planets and their satellites. In mineral exploration, minerals of the alunite-jarosite supergroup are recognized as key components of the advanced argillic (acid-sulfate) hydrothermal alteration assemblage, and supergene sulfate minerals can be useful guides to primary sulfide deposits. The role of soluble sulfate minerals formed from acid mine drainage (and its natural equivalent, acid rock drainage) in the storage and release of potentially toxic metals associated with wet-dry climatic cycles (on annual or other time scales) is increasingly appreciated in environmental studies of mineral deposits and of waste materials from mining and mineral processing. This volume compiles and synthesizes current information on sulfate minerals from a variety of perspectives, including crystallography, geochemical properties, geological environments of formation, thermodynamic stability relations, kinetics of formation and dissolution, and environmental aspects. The first two chapters cover crystallography (Chapter 1) and spectroscopy (Chapter 2). Environments with alkali and alkaline earth sulfates are described in the next three chapters, on evaporites (Chapter 3), barite-celestine deposits (Chapter 4), and the kinetics of precipitation and dissolution of gypsum, barite, and celestine (Chapter 5). Acidic environments are the theme for the next four chapters, which cover soluble metal salts from sulfide oxidation (Chapter 6), iron and aluminum hydroxysulfates (Chapter 7), jarosites in hydrometallugy (Chapter 8), and alunite-jarosite crystallography, thermodynamics, and geochronology (Chapter 9). The next two chapters discuss thermodynamic modeling of sulfate systems from the perspectives of predicting sulfate-mineral solubilities in waters covering a wide range in composition and concentration (Chapter 10) and predicting interactions between sulfate solid solutions and aqueous solutions (Chapter 11). The concluding chapter on stable-isotope systematics (Chapter 12) discusses the utility of sulfate minerals in understanding the geological and geochemical processes in both high- and low-temperature environments, and in unraveling the past evolution of natural systems through paleoclimate studies.
    Type of Medium: Monograph available for loan
    Pages: xiii, 608 S.
    ISBN: 0-939950-52-9 , 978-0-939950-52-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 40
    Classification:
    Mineralogy
    Note: Chapter 1. The Crystal chemistry of Sulfate Minerals by Frank C. Hawthorne, Servey V. Krivovichev, and Peter C. Burns, p. 1 - 112 Chapter 2. X-ray and Vibrational Spectroscopy of Sulfate in Earth Materials by Satish C. B. Myneni, p. 113 - 172 Chapter 3. Sulfate Minerals in Evaporite Deposits by Ronald J. Spencer, p. 173 - 192 Chapter 4. Barite-Celestine Geochemistry and Environments of Formation by Jeffrey S. Hanor, p. 193 - 276 Chapter 5. Precipitation and Dissolution of Alkaline Earth Sulfates: Kinetics and Surface Energy by A. Hina and G. H. Nancollas, p. 277 - 302 Chapter 6. Metal-sulfate Salts from Sulfide Mineral Oxidation by John L. Jambor, D. Kirk Nordstrom, and Charles N. Alpers, p. 303 - 350 Chapter 7. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters by J. M. Bigham and D. Kirk Nordstrom, p. 351 - 404 Chapter 8. Jarosites and Their Application in Hydrometallurgy by John E. Dutrizac and John L. Jambor, p. 405 - 452 Chapter 9. Alunite-Jarosite Crystallography, Thermodynamics, and Geochemistry by R. E. Stoffregen, C. N.. Alpers, and John L. Jambor, p. 453 - 480 Chapter 10. Solid-Solution Solubilities and Thermodynamics: Sulfates, Carbonates and Halides by Pierre Glynn, p. 481 - 512 Chapter 11. Predicting Sulfate-Mineral Solubility in Concentrated Waters by Carol Ptacek and David Blowes, p. 513 - 540 Chapter 12. Stable Isotope Systematics of Sulfate Minerals by Robert R. Seal, II, Charles N. Alpers, and Robert O. Rye, p. 541 - 602
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: 10/N 01.0413 ; AWI G2-19-51789
    Type of Medium: Monograph available for loan
    Pages: XX, 455 Seiten , Illustrationen
    ISBN: 354066453X
    Classification:
    Geochemistry
    Language: English
    Note: Table of Contents: 1 The Solid Phase of Marine Sediments / DIETER K. FÜTTERER 1.1 Introduction 1.2 Sources and Components of Marine Sediments 1.2.1 Lithogenous Sediments 1.2.2 Biogenous Sediments 1.2.3 Hydrogenous Sediments 1.3 Classification of Marine Sediments 1.3.1 Terrigenous Sediments 1.3.2 Deep-Sea Sediments 1.4 Global Patterns of Sediment Distribution 1.4.1 Distribution Patterns of Shelf Sediments 1.4.2 Distribution Patterns of Deep-Sea Sediments 1.4.3 Distribution Patterns of Glay Minerals 1.4.4 Sedimentation Rates 2 Geophysical Perspectives in Marine Sediments 2.1 Physical Properties of Marine Sediments / MONIKA BREITZKE 2.1.1 Introduction 2.1.2 Porosity and Wet Bulk Density 2.1.2.1 Analysis by Weight and Volume 2.1.2.2 Gamma Ray Attenuation 2.1.2.3 Electrical Resistivity (Galvanic Method) 2.1.2.4 Electrical Resistivity (Inductive Method) 2.1.3 Permeability 2.1.4 Acoustic and Elastic Properties 2.1.4.1 Biot-Stoll Model 2.1.4.2 Full Waveform Ultrasonic Gore Logging 2.1.5 Sediment Classification 2.1.5.1 Full Waveform Gore Logs as Acoustic Images 2.1.5.2 P-and S-Wave Velocity, Attenuation, Elastic Moduli and Permeability 2.1.6 Sediment Echosounding 2.1.6.1 Synthetic Seismograms 2.1.6.2 Narrow-Beam Parasound Echosounder Recordings 2.2 Sedimentary Magnetism / ULRICH BLEIL 2.2.1 Introduction 2.2.2 Biogenie Magnetic Minerals in Marine Sediments 2.2.3 Reduction Diagenesis of Magnetic Minerals in Marine Environments 3 Quantification of Early Diagenesis: Dissolved Constituents in Marine Pore Water / HORST D. SCHULZ 3.1 Introduction: How to Read Pore Water Concentration Profiles 3.2 Calculation of Diffusive Fluxes and Diagenetic Reaction Rates 3.2.1 Steady State and Non-Steady State Situations 3.2.2 The Steady State Situation and Fick's First Law of Diffusion 3.2.3 Quantitative Evaluation of Steady State Concentration Profiles 3.2.4 The Non-Steady State Situation and Fick's Second Law of Diffusion 3.2.5 The Primary Redox-Reactions: Degradation of Organic Matter 3.3 Sampling of Pore Water for Ex-Situ Measurements 3.3.1 Obtaining Sampies of Sediment for the Analysis of Pore Water 3.3.2 Pore Water Extraction from the Sediment 3.3.3 Storage, Transport and Preservation of Pore Water 3.4 Analyzing Constituents in Pore Water, Typical Profiles 3.5 In-Situ Measurements 3.6 Influence of Bioturbation, Bioirrigation, and Advection 4 Organic Matter: The Driving Force for Early Diagenesis / JÜRGEN RULLKÖTTER 4.1 The Organic Carbon Cycle 4.2 Organic Matter Accumulation in Sediments 4.2.1 Productivity Versus Preservation 4.2.2 Primary Production of Organic Matter and Export to the Ocean Bottom 4.2.3 Transport of Organic Matter through the Water Column 4.2.4 The Influence of Sedimentation Rate on Organic Matter Burial 4.2.5 Allochthonous Organic Matter in Marine Sediments 4.3 Early Diagenesis 4.3.1 The Organic Carbon Content of Marine Sediments 4.3.2 Chemical Composition of Biomass 4.3.3 The Principle of Selective Preservation 4.3.4 The Formation of Fossil Organic Matter and its Bulk Composition 4.3.5 Early Diagenesis at the Molecular Level 4.3.6 Biological Markers (Molecular Fossils) 4.4 Organic Geochemical Proxies 4.4.1 Total Organic Carbon and Sulfur 4.4.2 Marine Versus Terrigenous Organic Matter 4.4.3 Molecular Paleo-Seawater Temperature and Climate Indicators 4.5 Analytical Techniques 4.5.1 Sam pie Requirements 4.5.2 Elemental and Bulk Isotope Analysis 4.5.3 Rock-Eval Pyrolysis and Pyrolysis Gas Chromatography 4.5.4 Organic Petrography 4.5.5 Bitumen Analysis 4.6 The Future of Marine Geochemistry of Organic Matter 5 Bacteria and Marine Biogeochemistry / Bo BARKER JORGENSEN 5.1 Role of Microorganisms 5.1.1 From Geochemistry to Microbiology - and back 5.1.2 Approaches in Marine Biogeochemistry 5.2 Life and Environments at Small Scale 5.2.1 Hydrodynamics of Low Reynolds Numbers 5.2.2 Diffusion at Small Scale 5.2.3 Diffusive Boundary Layers 5.3 Regulation and Limits of Microbial Processes 5.3.1 Substrate Uptake by Microorganisms 5.3.2 Temperature as a Regulating Factor 5.3.3 Other Regulating Factors 5.4 Energy Metabolism of Prokaryotes 5.4.1 Free Energy 5.4.2 Reduction-Oxidation Processes 5.4.3 Relations to Oxygen 5.4.4 Definitions of Energy Metabolism 5.4.5 Energy Metabolism of Microorganisms 5.4.6 Chemolithotrophs 5.4.7 Respiration and Fermentation 5.5 Pathways of Organic Matter Degradation 5.5.1 Depolymerization of Macromolecules 5.5.2 Aerobic and Anaerobic Mineralization 5.5.3 Depth Zonation of Oxidants 5.6 Methods in Biogeochemistry 5.6.1 Incubation Experiments 5.6.2 Radioactive Tracers 5.6.3 Example: Sulfate Reduction 5.6.4 Specific Inhibitors 5.6.5 Other Methods 6 Early Diagenesis at the Benthic Boundary Layer: Oxygen and Nitrate in Marine Sediments / CHRISTIAN HENSEN AND MATTHIAS ZABEL 6.1 Introduction 6.2 Oxygen and Nitrate Distribution in Seawater 6.3 The Role of Oxygen and Nitrate in Marine Sediments 6.3.1 Respiration and Redox Processes 6.3.1.1 Nitrification and Denitrification 6.3.1.2 Coupling of Oxygen and Nitrate to other Redox Pathways 6.3.2 Determination of Consumption Rates and Senthic Fluxes 6.3.2.1 Fluxes and Concentration Profiles Determined by In-Situ Devices 6.3.2.2 Ex-Situ Pore Water Data from Deep-Sea Sediments 6.3.2.3 Determination of Denitrification Rates 6.3.3 Oxic Respiration, Nitrification and Denitrification in Different Marine Environments 6.3.3.1 Quantification of Rates and Fluxes 6.3.3.2 Variation in Different Marine Environments: Case Studies 6.4 Summary 7 The Reactivity of Iron / RALF R. HAESE 7.1 Introduction 7.2 Pathways of Iron Input to Marine Sediments 7.2.1 Fluvial Input 7.2.2 Aeolian Input 7.3 Iron as a Limiting Nutrient for Primary Productivity 7.4 The Early Diagenesis of Iron in Sediments 7.4.1 Dissimilatary Iran Reductian 7.4.2 Solid Phase Ferric Iron and its Bioavailability 7.4.2.1 Properties of Iron Oxides 7.4.2.2 Bioavailability of Iron Oxides 7.4.2.3 Bioavailability of Sheet Silicate Sound Ferric lron 7.4.3 Iron and Manganese Redax Cycles 7.4.4 Iron Reactivity towards S, O2, Mn, NO3, P, HCO3, and Si-AI 7.4.4.1 lron Reduction by HS and Ligands 7.4.4.2 Iron Oxidation by O2, NO3, and Mn4+ 7.4.4.3 Iron-Sound Phosphorus 7.4.4.4 The Formation of Siderite 7.4.4.5 The Formation of lron Searing Aluminosilicates 7.4.5 Discussion: The Importance of Fe-and Mn-Reactivity in Various Enyironments 7.5 The Assay for Ferric and Ferrous Iron 8 Sulfate Reduction in Marine Sediments / SABINE KASTEN AND BO BARKER JØRGENSEN 8.1 Introduction 8.2 Sulfate Reduction and the Degradation of Organic Matter 8.3 Biotic and Abiotic Processes Coupled to Sulfate Reduction 8.3.1 Pyrite Formation 8.3.2 Effects of Sulfate Reduction on Sedimentary Solid Phases 8.4 Determination of Sulfate Reduction Rates 9 Marine Carbonates: Their Formation and Destruction / RALPH R. SCHNEIDER, HORST D. SCHULZ AND CHRISTIAN HENSEN 9.1 Introduction 9.2 Marine Environments of Carbonate Production and Accumulation 9.2.1 Shallow-Water Carbonates 9.2.2 Pelagic Calcareous Sediments 9.3 The Calcite-Carbonate-Equilibrium in Marine Aquatic Systems 9.3.1 Primary Reactions of the Calcite-Carbonate-Equilibrium with Atmospheric Contact in Infinitely Diluted Solutions 9.3.2 Primary Reactions of the Calcite-Carbonate-Equilibrium without Atmospheric Contact 9.3.3 Secondary Reactions of the Calcite-Carbonate-Equilibrium in Seawater 9.3.4 Examples for Calculation of the Calcite-Carbonate-Equilibrium in Ocean Waters 9.4 Carbonate Reservoir Sizes and Fluxes between Particulate and Dissolved Reservoirs 9.4.1 Production Versus Dissolution of Pelagic Carbonates 9.4.2 Inorganic and Organic Carbon Release trom Deep-Sea Sediments 10 Influences of Geochemical Processes on Stable Isotope Distribution in Marine Sediments / TORSTEN SICKERT 10.1 Introduction 10.2 Fundamentals 10.2.1 Principles of Isotopic Fractionation 10.2.2 Analytical Procedures 10.3 Geochemicallnfluences on 18O/16O Ratios 10.3.1 δ18O of Seawater 10.3.2 δ18O in Marine Carbonates 10.4 Geochemical Influences on 13C/12C Ratios 10.4.1
    Location: Reading room
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...