ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Latest Papers from Table of Contents or Articles in Press  (3)
  • Geological Magazine 148: 191-210.  (1)
  • Geological Magazine. 2010; 148(2): 191-210. Published 2010 Jun 28. doi: 10.1017/s001675681000049x.  (1)
  • Journal of Seismology. 2017; 21(4): 857-868. Published 2017 Jan 24. doi: 10.1007/s10950-017-9640-x.  (1)
  • 2106
  • 2305
Collection
  • Articles  (3)
Source
  • Latest Papers from Table of Contents or Articles in Press  (3)
Years
Journal
Topic
  • 1
    Publication Date: 2011-03-01
    Description: The updated geological and potential fields data on the East European Platform margin in SE Poland confirm the existence of several regional units differing in Ediacaran to Silurian development: the Upper Silesian Block, Ma[l]opolska Block and [L]ysogory Block. All the blocks are characterized by a distinct crustal structure seen in Vp velocity models obtained from the seismic refraction data of the CELEBRATION 2000 Programme. The first two units are interpreted as exotic terranes initially derived from Avalonia-type crust and ultimately accreted before the late Early Devonian. The [L]ysogory Block is probably a proximal terrane displaced dextrally along the Baltica margin. The sutures between the terranes do not precisely match lateral gradients in Vp models. This is partly explained by a limited resolution of refraction seismic data (20 km wide interpretative window). Most of the difference is related, however, to a post-accretionary tectonism, mainly Variscan transtension-transpression. The latter processes took advantage of lithospheric memory recorded earlier as zones of rheological weakness along the former suture zones. The course of the East European Platform margin (= Teisseyre-Tornquist Zone) corresponds most likely to the Nowe Miasto-Zawichost Fault marking the NE boundary of the proximal [L]ysogory Terrane.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-06-28
    Description: The updated geological and potential fields data on the East European Platform margin in SE Poland confirm the existence of several regional units differing in Ediacaran to Silurian development: the Upper Silesian Block, Małopolska Block and Łysogóry Block. All the blocks are characterized by a distinct crustal structure seen in Vp velocity models obtained from the seismic refraction data of the CELEBRATION 2000 Programme. The first two units are interpreted as exotic terranes initially derived from Avalonia-type crust and ultimately accreted before the late Early Devonian. The Łysogóry Block is probably a proximal terrane displaced dextrally along the Baltica margin. The sutures between the terranes do not precisely match lateral gradients in Vp models. This is partly explained by a limited resolution of refraction seismic data (20 km wide interpretative window). Most of the difference is related, however, to a post-accretionary tectonism, mainly Variscan transtension–transpression. The latter processes took advantage of lithospheric memory recorded earlier as zones of rheological weakness along the former suture zones. The course of the East European Platform margin (= Teisseyre–Tornquist Zone) corresponds most likely to the Nowe Miasto–Zawichost Fault marking the NE boundary of the proximal Łysogóry Terrane.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-24
    Description: The receiver function (RF) technique is a well-established method to investigate the crustal and upper mantle structures based on three-component seismograms of teleseismic events. In the present study, we propose a modified automatic procedure to determine the back azimuth and polarization angles of a teleseismic event based on the RF technique. The method is tested for the recording of 3 permanent and 3 temporary broadband seismic stations located in the vicinity of Poland. Additionally, the analysis of Rayleigh wave polarization is conducted to show that the new procedure is not sensitive to incorrect seismometer orientation. The synthetic modelling of RF by a modified ray-tracing method for 2.5D models beneath each seismic station down to a depth of 60 km is performed to show the effectiveness of the proposed method in the calculation of RF for a complex structure with dipping layers. © 2017, The Author(s).
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...