ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Latest Papers from Table of Contents or Articles in Press  (2)
  • American Institute of Physics (AIP)  (2)
  • Blackwell Publishing Ltd
  • Institute of Physics (IOP)
  • MDPI Publishing
  • Public Library of Science (PLoS)
  • APL Materials  (1)
  • Journal of Chemical Physics  (1)
  • 198986
  • 807
Collection
  • Articles  (2)
Source
  • Latest Papers from Table of Contents or Articles in Press  (2)
Publisher
  • American Institute of Physics (AIP)  (2)
  • Blackwell Publishing Ltd
  • Institute of Physics (IOP)
  • MDPI Publishing
  • Public Library of Science (PLoS)
  • +
Years
  • 1
    Publication Date: 2016-08-30
    Description: In the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-11
    Description: 1-photon (382 nm) and 2-photon (752 nm) excitations to the S 1 state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S 1 → S n due to resonant absorption of a third pump photon. Subsequent S n → S 1 internal conversion (with τ 1 = 1 ps) prepares a very hot S 1 state which cools down with τ 2 = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ (2) = 32 ⋅ 10 −50 cm 4 s at 752 nm are evaluated from the bleach signal.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...