ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Latest Papers from Table of Contents or Articles in Press  (2)
  • 2010-2014  (2)
  • 2005-2009
  • 2014  (2)
  • Bioinformatics  (1)
  • Nucleic Acids Research  (1)
  • 169615
  • 2184
  • 60967
Collection
  • Articles  (2)
Source
  • Latest Papers from Table of Contents or Articles in Press  (2)
Years
  • 2010-2014  (2)
  • 2005-2009
Year
  • 1
    Publication Date: 2014-04-11
    Description: Motivation: Histone modifications are a key epigenetic mechanism to activate or repress the transcription of genes. Datasets of matched transcription data and histone modification data obtained by ChIP-seq exist, but methods for integrative analysis of both data types are still rare. Here, we present a novel bioinformatics approach to detect genes that show different transcript abundances between two conditions putatively caused by alterations in histone modification. Results: We introduce a correlation measure for integrative analysis of ChIP-seq and gene transcription data measured by RNA sequencing or microarrays and demonstrate that a proper normalization of ChIP-seq data is crucial. We suggest applying Bayesian mixture models of different types of distributions to further study the distribution of the correlation measure. The implicit classification of the mixture models is used to detect genes with differences between two conditions in both gene transcription and histone modification. The method is applied to different datasets, and its superiority to a naive separate analysis of both data types is demonstrated. Availability and implementation: R/Bioconductor package epigenomix. Contact: h.klein@uni-muenster.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-17
    Description: Ribonucleotides are misincorporated into replicating DNA due to the similarity of deoxyribonucleotides and ribonucleotides, the high concentration of ribonucleotides in the nucleus and the imperfect accuracy of replicative DNA polymerases in choosing the base with the correct sugar. Embedded ribonucleotides change certain properties of the DNA and can interfere with normal DNA transactions. Therefore, misincorporated ribonucleotides are targeted by the cell for removal. Failure to remove ribonucleotides from DNA results in an increase in genome instability, a phenomenon that has been characterized in various systems using multiple assays. Recently, however, another side to ribonucleotide misincorporation has emerged, where there is evidence for a functional role of misinserted ribonucleotides in DNA, leading to beneficial consequences for the cell. This review examines examples of both positive and negative effects of genomic ribonucleotide misincorporation in various organisms, aiming to highlight the diversity and the utility of this common replication variation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...