ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • NASA Technical Reports  (5)
  • LUNAR AND PLANETARY EXPLORATION  (4)
  • Space Sciences (General)  (1)
Collection
  • Other Sources  (5)
Source
  • NASA Technical Reports  (5)
Years
  • 1
    Publication Date: 2019-07-19
    Description: Saturn's innermost principal moon Mimas shares the distinction with Europa at Jupiter of being the most irradiated icy moon in its respective planetary system, although the energetic electron energy flux at Mimas is forty times smaller than at Europa. High energy (〉 10 MeV) proton fluxes are low in this moon's orbital corridor, likely since slowly diffusing protons from the weak but steady source of cosmic ray albedo neutron decay (CRAND) cannot accumulate without impacting the moon surface. Lower energy proton fluxes are also evidently suppressed in this orbital region. Plasma ion and electron fluxes are also low apparently due to cooling by interaction with E-ring dust and neutral gas from Enceladus. Due to energy-dependent effects of longitudinal gradient-curvature drift for the electrons, the trailing hemisphere is mainly irradiated by electrons at energies below 1 MeV that drift relative to Mimas in the prograde direction of orbital motion around Saturn, while higher energy electrons primarily impact the leading hemisphere. Plasma ions in the inner magnetosphere of Saturn are mainly pickup ions forming from the dissociation products of Enceladus plume water molecules, additionally including some contribution from photosputtering of the main rings, and do not introduce new elemental materials at Mimas via surface implantation from the corotating plasma. Thus the primary interaction at the surface is radiolytic chemistry induced in pure water ice by relatively deep penetration of the energetic electrons to millimeter and greater depths, as compared to the micron depths impacted by the corotating plasma ions. If surface erosion by sputtering from relatively low fluxes of the plasma and more energetic ions is indeed ineffective, then molecular products (OH, H2O2, 02, 03) of the radiolytic interactions may accumulate in the meters-deep impact regolith of the surface ices. An effect of regolith trapped gas accumulation could be to increase porosity and reduce thermal conductivity of the ice, potentially contributing to reported thermal anomalies from Cassini infrared map observations. Low amplitude of trailing-leading asymmetry in optical albedo and color maps at Mimas is suggestive of relative weakness of asymmetrical effects from low-energy ions. Greater induced asymmetries are expected and observed for the moons beyond Enceladus in the middle magnetospheric region of hot plasma ions at much greater fluxes than at Mimas. Low density (1.15 g/cc) of this moon indicates paucity of mineral salts and radiogenic heating to maintain subsurface liquids, so Enceladus-like cryovolcanism as a resurfacing process is unlikely despite closer proximity to Saturn, greater tidal forcing, and more intense surface irradiation than for Enceladus.
    Keywords: Space Sciences (General)
    Type: 2010 American Geophysical Union (AGU) Fall Meeting; Dec 13, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: By examining particle and magnetic field data from the Voyager 1 and 2 spacecraft, signatures were found indicating that the (greater than about 28 keV) particle pressure parallel to the magnetic field is greater than the pressure perpendicular to the field within the nightside neutral sheet (three nightside neutral sheet crossings, with favorable experimental conditions, were used). By incorporating the pressure anisotropy into the calculation of radial forces within the hightside neutral sheet, it is found that (1) force balance is approximately achieved and (2) the anisotropy force term provides the largest contribution of the other particle forces considered (pressure gradients and the corotation centrifugal force). With regard to the problem of understanding the balance of radial forces within the dayside neutral sheet (McNutt, 1984; Mauk and Krimigis, 1987), the nightside pressure anisotropy force is larger than the dayside pressure gradient forces at equivalent radial distances; however, a full accounting of the dayside regions remains to be achieved.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The calculation of the absorption rate of charged particles by planetary satellites introduced by Paonessa and Cheng (1987) is generalized to include an arbitrary offset of the dipole center from the planet center, appropriate for Neptune. The absorption rates calculated for particles of fixed L shell, energy, and pitch angle reflect the features of the complicated geometry of the dipole and the moons. This absorption probability is found to be insignificant compared with that of the rings at L shells to which both sets of absorbers map. However, at larger radii the sweeping rate is controlled by the moons, and the corresponding absorption features provide a starting point for understanding the Voyager energetic particle observations.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research Supplement (ISSN 0148-0227); 96; 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: Because the effective 'area' of the Neptunian rings is larger than that of the inner moons, the sweeping of energetic particles by the rings is perhaps the dominant process for particle loss in the magnetosphere within 5 R(N). In this paper, a theory for calculating the absorption probability of energetic charged particles by the rings is described. The effects of a large tilt and an offset between the planet and dipole centers are included. It is found that the probability of absorption for protons is so high that the sweeping lifetime is only a few times the gradient-curvature drift period. For electrons, the sweeping lifetime is even less. The pitch angle dependence for sweeping manifests itself strongly only at large equatorial pitch angles. Lower-energy particles have higher absorption rates by the rings.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research Supplement (ISSN 0148-0227); 96; 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: The Voyager Low Energy Charged Particle ion data from the Jovian magnetosphere were analyzed to determine the phase-space densities of particles in the region between 5 and 80 Jupiter radii. Data from the Jovian current sheet crossings for locally mirroring particles were used. These are the first calculations of phase-space densities in the nondipolar field region containing the Jovian magnetodisk current sheet. The profiles are consistent with lossy inward radial transport and a source in the outer magnetosphere. The inferred loss rate in a radial diffusion model measuring how quickly particles are scattered out of the neutral sheet exceeds the usual strong diffusion loss rate.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 20833-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...