ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (22)
  • NASA Technical Reports  (22)
  • Cybernetics, Artificial Intelligence and Robotics  (7)
  • AERODYNAMICS  (5)
  • Computer Programming and Software  (5)
  • Electronics and Electrical Engineering  (5)
Collection
  • Other Sources  (22)
Source
  • NASA Technical Reports  (22)
  • 1
    Publication Date: 2019-06-08
    Description: Lithium-oxygen (Li-O2) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently there have been significant advances in the development of graphene-based air cathode materials with a large surface area and high catalytic activity for both oxygen reduction and evolution reactions. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm2. Despite the high gravimetric capacity values achieved, therefore, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high mass loading (up to 10 mg/cm2) graphene-based air electrodes for high-performance Li-O2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression molding holey graphene because of the unique dry compressibility of this graphene structural derivative with in-plane holes. High mass loading Li-O2 batteries prepared in this manner exhibited excellent gravimetric capacity and thus ultrahigh areal capacity (as high as ~40 mAh/cm2). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm2), with ultrathick cathodes showing a better stability during cycling than thinner ones. Detailed postmortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, which were the oxygen diffusion blockage and the catalytic site deactivation, respectively. The results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high capacity, high performance air cathodes in Li-O2 batteries of practical significance.
    Keywords: Electronics and Electrical Engineering
    Type: NF1676L-26541 , Nano Letters (ISSN 1530-6984) (e-ISSN 1530-6992); 17; 5; 3252-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 26; 553-560
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An approximate solution for the unsteady loading near the square-shape tip of a wing passing through an oblique gust is obtained in closed form. The aerodynamic theory developed can be used to predict airloads felt by a helicopter blade experiencing a blade/vortex interaction for high blade tip speed and/or for small vertical blade/vortex separation. Under these conditions one can show that the blade's trailing edge has little influence on the character of the chordwise loading at all spanwise sections; thus, the chord may be allowed to extend to infinity in the downstream direction. Therefore, the model considered here is that of a quarter-infinite flat plate wing with side edge passing subsonically through an oblique gust.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 21; June 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: A linear aerodynamic-acoustic theory is developed for the prediction of the surface pressure distribution and three-dimensional acoustic far-field for a flat plate rectangular wing encountering a stationary short-wavelength oblique gust. It is suggested that for an infinite-span wing, leading- and trailing-edge responses to a short-wavelength gust are essentially independent. This idea is used to solve for the two-dimensional pressure field due to the passage of an infinite-span wing through an oblique gust. By allowing the field point to come down to the wing's surface, one finds an expression for the surface pressure distribution which agrees with that given in the two-dimensional aerodynamic theories of Amiet and Adamczyk. Spanwise Fourier superposition of two-dimensional solutions to the infinite-span wing problem is used to approximate the three-dimensional acoustic field due to the interaction of a stationary oblique gust with a flat-plate rectangular wing traveling at a subsonic speed.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 18; June 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A wind tunnel experiment involving single, double, and triple combinations of mutually interfering generic, unfinned aircraft stores has been conducted. Each combination of stores was tested at Mach numbers from 0.60 to 1.20 and at angles of attack from 0 to 25 deg for the single store and from 0 to 6 deg for the double and triple store configurations. Extensive axial and circumferential pressure and flow visualization data at each store location were obtained. Euler solutions for each configuration at 0 deg incidence have been generated and compared with experimental data. This comparison indicates an Euler flow solver can yield accurate predictions of the location and magnitude of multibody interference provided an appropriate grid is used and the viscous effects associated with these configurations remain small. The data indicate multibody interference in the transonic region increases as the freestream Mach number approaches 1 from either direction, and subsides as the Mach number moves away from sonic conditions. This interference is characterized by a large, localized reduction in pressure on the inboard surfaces of the bodies which results in forces that draw the configuration closer together.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 87-0519
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.
    Keywords: Computer Programming and Software
    Type: NASA-CR-200166 , NAS 1.26:200166 , (ISSN 0018-9162)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Objectives include: I. Prototype a camera service leveraging the CCSDS Integrated protocol stack (MIRA/SM&C/AMS/DTN): a) CCSDS MIRA Service (New). b) Spacecraft Monitor and Control (SM&C). c) Asynchronous Messaging Service (AMS). d) Delay/Disruption Tolerant Networking (DTN). II. Additional MIRA Objectives: a) Demo of Camera Control through ISS using CCSDS protocol stack (Berlin, May 2011). b) Verify that the CCSDS standards stack can provide end-to-end space camera services across ground and space environments. c) Test interoperability of various CCSDS protocol standards. d) Identify overlaps in the design and implementations of the CCSDS protocol standards. e) Identify software incompatibilities in the CCSDS stack interfaces. f) Provide redlines to the SM&C, AMS, and DTN working groups. d) Enable the CCSDS MIRA service for potential use in ISS Kibo camera commanding. e) Assist in long-term evolution of this entire group of CCSDS standards to TRL 6 or greater.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: JSC-CN-23518 , CCSDS Spring 2011; May 16, 2011 - May 20, 2011; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: The Customer Avionics Interface Development and Analysis (CAIDA) team helps to provide modeling and simulation software for the verification of the Launch Control System (LCS). With a new iteration of telemetry tools being developed, extensive work must be done to ensure features are implemented in an efficient manner. The authors worked to develop new functionalities in the telemetry tools, update documentation, and perform various tests on the CAIDA Advanced Telemetry Tool (CATT). This was accomplished with Python through built-in library frameworks. In addition, work needed to be performed to set up a training document for new engineers and interns joining the team in the future. The outcome of this internship was the completion of several new features, unit and functional tests on CATT, thorough documentation, and a developers guide to programming under CAIDA.
    Keywords: Computer Programming and Software
    Type: KSC-E-DAA-TN62480
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...