ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (23)
  • NASA Technical Reports  (23)
  • Meteorology and Climatology  (15)
  • Spacecraft Design, Testing and Performance  (8)
  • 2020-2024
  • 2015-2019  (11)
  • 2010-2014  (12)
  • 1990-1994
  • 1940-1944
Collection
  • Other Sources  (23)
Source
  • NASA Technical Reports  (23)
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and that these metrics can be used to evaluate model quality in both current and future climate states. This information will be used to produce new consensus projections and provide communities with improved climate projections for urgent decision-making.
    Keywords: Meteorology and Climatology
    Type: NF1676L-21455 , CERES Science Team Meeting; May 05, 2015 - May 07, 2015; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3 x 3.75 weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in the global sink from the tropics south to the north relative to the prior and to an in-situ-only inversion. We also find a smaller terrestrial sink in higher-latitude northern regions in boreal summer of 2010 relative to 2009.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN28909 , AGU Fall Meeting 2015; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25317 , Infotech@Aerospace; Jun 19, 2012 - Jun 21, 2012; Garden Grove, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009. The nominal mission ended on September 15, 2010 and LRO is now on a four-year extended mission. The LRO performances in hot and cold cases are compared to pre-launch analysis predicts, and operational lessons learned are discussed. One instrument has required tighter-than-anticipated thermal control, and two others have frequently requested unanticipated calibration maneuvers that had to be evaluated for their thermal performance. A series of off nadir thermal analyses of the entire orbiter were performed prior to launch, and these predictions are compared to actual maneuvers, with a discussion of the process by which maneuvers can be rapidly evaluated for thermal concerns. On December 21st, 2010, LRO experienced its first severe Lunar Eclipse. Operationally, this required the Spacecraft to pre-heat its main avionics panel in order to minimize control heater power during the period when the Earth blocks the sun from the moon. The operational design and in-flight performance are summarized.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC.CP.4805.2011 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Global Space Exploration Conference; May 22, 2012 - May 24, 2012; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-23
    Description: In January of 2017, NASA's Space Technology and Science Mission Directorates established the Small Spacecraft Systems Virtual Institute (S3VI). The mission of the agency-wide institute is to advance the field of small spacecraft systems to expand the capabilities and utility of small spacecraft to perform high-value science by promoting innovation, exploring new concepts, identifying emerging technology opportunities, and establishing effective conduits for the collaboration and the dissemination of research results relevant to small spacecraft systems and subsystems. To achieve this, the S3VI serves as the common portal for NASA-related small spacecraft activities, hosts the Small Spacecraft Body of Knowledge as an online resource for the annual Small Spacecraft Technology State of the Art report, including a components and subsystems database, and also collects and organizes related knowledge such as small spacecraft reliability processes and best practices. The S3VI also serves as the front door for other governmental, non-governmental, and external agencies that wish to collaborate or interact with NASA small spacecraft organizations. NASA also presently has a growing number of small spacecraft related programs, projects, and efforts underway to advance the utility of small spacecraft instruments, technologies, and missions to support NASA to achieve its exploration and science goals. These various activities will be outlined and described to include small spacecraft applications and supporting technologies for cis-lunar and deep space missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAC-18-B4.9-GTS.5.12 , ARC-E-DAA-TN61784 , International Astronautical Congress; Oct 01, 2018 - Oct 05, 2018; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-4195 , Future In-Space Operations (FISO); Sep 14, 2016; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Assessing snow cover patterns in mountain regions remains a challenge for a variety of reasons. Topography (e.g., elevation, exposure, aspect, and slope) strongly influences snowfall accumulation and subsequent ablation processes, leading to pronounced spatial variability of snow cover. In-situ observations are typically limited to open areas at lower elevations (〈1000 m). In this paper, we use several products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess snow cover extent in the Southern Appalachian Mountains (SAM). MODIS daily snow cover maps and true color imagery are analyzed after selected snow events (e.g., Gulf/Atlantic Lows, Alberta Clippers, and Northwest Upslope Flow) from 2006 to 2012 to assess the spatial patterns of snowfall across the SAM. For each event, we calculate snow cover area across the SAM using MODIS data and compare with the Interactive Multi-sensor Snow and ice mapping system (IMS) and available in-situ observations. Results indicate that Gulf/Atlantic Lows are typically responsible for greater snow extent across the entire SAM region due to intensified cyclogenesis associated with these events. Northwest Upslope Flow events result in snow cover extent that is limited to higher elevations (〉1000 m) across the SAM, but also more pronounced along NW aspects. Despite some limitations related to the presence of ephemeral snow or cloud cover immediately after each event, we conclude that MODIS products are useful for assessing the spatial variability of snow cover in heavily forested mountain regions such as the SAM.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7295.2012 , 69th Eastern Snow Conference; Jun 05, 2012 - Jun 07, 2012; Claryville, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.7019.2012 , IEEE 2012 Geoscience and Remote Sensing Symposium; Jul 23, 2012 - Jul 27, 2012; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Snow mapping is a common practice in regions that receive large amounts of snowfall annually, have seasonally-continuous snow cover, and where snowmelt contributes significantly to the hydrologic cycle. Although higher elevations in the southern Appalachian Mountains average upwards of 100 inches of snow annually, much of the remainder of the Southeast U.S. receives comparatively little snowfall (〈 10 inches). Recent snowy winters in the region have provided an opportunity to assess the fine-grained spatial distribution of snow cover and the physical processes that act to limit or improve its detection across the Southeast. In the present work, both in situ and remote sensing data are utilized to assess the spatial distribution of snow cover for a sample of recent snowfall events in North Carolina. Specifically, this work seeks to determine how well ground measurements characterize the fine-grained patterns of snow cover in relation to Moderate- Resolution Imaging Spectroradiometer (MODIS) snow cover products (in this case, the MODIS Fractional Snow Cover product).
    Keywords: Meteorology and Climatology
    Type: 67th Eastern Snow Conference; Jun 08, 2010 - Jun 10, 2010; Hancock, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...