ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (23)
  • NASA Technical Reports  (23)
  • 2010-2014  (12)
  • 2000-2004  (11)
  • 1980-1984
  • 1940-1944
  • 2011  (12)
  • 2000  (11)
  • 1
    Publikationsdatum: 2011-08-24
    Beschreibung: The sampling capability of Tenax-TA tubes, used in the National Aeronautics and Space Administration's solid sorbent air sampler to trap and concentrate contaminants from air aboard spacecraft, was improved by incorporating two sorbents within the tubes. Existing tubes containing only Tenax-TA allowed highly volatile compounds to "break through" during collection of a 1.5 L air sample. First the carbon molecular sieve-type sorbents Carboxen 569 and Carbosieve S-III were tested for their ability to quantitatively trap the highly volatile compounds. Breakthrough volumes were determined with the direct method, whereby low ppm levels of methanol or Freon 12 in nitrogen were flowed through the sorbent tubes at 30 mL/min, and breakthrough was detected by gas chromatography. Breakthrough volumes for methanol were about 9 L/g on Carboxen 569 and 11 L/g on Carbosieve S-III; breakthrough volumes for Freon 12 were about 7 L/g on Carboxen 569 and 〉 26 L/g on Carbosieve S-III. Next, dual-bed tubes containing either Tenax-TA/Carbosieve S-III, Tenax-TA/Carboxen 569, or Carbotrap/Carboxen 569 to a 10-component gas mixture were exposed, in dry and in humidified air (50% relative humidity), and percentage recoveries of each compound were determined. The Tenax-TA/Carboxen 569 combination gave the best overall recoveries (75-114% for the 10 compounds). Acetaldehyde had the lowest recovery (75%) of the 10 compounds, but this value was still an improvement over either the other two sorbent combinations or the original single-sorbent tubes.
    Schlagwort(e): Environment Pollution
    Materialart: AIHAJ : a journal for the science of occupational and environmental health and safety (ISSN 1529-8663); Volume 61; 1; 69-75
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2011-08-24
    Beschreibung: Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: Emerging infectious diseases (ISSN 1080-6040); Volume 6; 3; 217-27
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2011-08-24
    Beschreibung: The human health community has been slow to adopt remote sensing technology for research, surveillance, or control activities. This chapter presents a brief history of the National Aeronautics and Space Administration's experiences in the use of remotely sensed data for health applications, and explores some of the obstacles, both real and perceived, that have slowed the transfer of this technology to the health community. These obstacles include the lack of awareness, which must be overcome through outreach and proper training in remote sensing, and inadequate spatial, spectral and temporal data resolutions, which are being addressed as new sensor systems are launched and currently overlooked (and underutilized) sensors are newly discovered by the health community. A basic training outline is presented, along with general considerations for selecting training candidates. The chapter concludes with a brief discussion of some current and future sensors that show promise for health applications.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: Advances in parasitology (ISSN 0065-308X); Volume 47; 331-44
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2011-08-24
    Beschreibung: BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.
    Schlagwort(e): Aerospace Medicine
    Materialart: European journal of clinical investigation (ISSN 0014-2972); Volume 30; 12; 1055-65
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2011-08-24
    Beschreibung: In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.
    Schlagwort(e): Aerospace Medicine
    Materialart: Pflugers Archiv : European journal of physiology (ISSN 0031-6768); Volume 441; 2-3 Suppl; R52-61
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-17
    Beschreibung: We determine the radial component of the supergranular flow velocity by examining the center-to-limb variation of the Doppler velocity signal. We acquire individual Doppler images obtained with the MDI instrument on the SOHO spacecraft and process them to remove the p-mode oscillation signal, the axisymmetric flows, the convective blueshift signal, and instrumental artifacts. The remaining Doppler signal contains only cellular flow structures. The Doppler signal from the horizontal flows in these cells varies like sin p, where p is the heliocentric angle from disk center. The Doppler signal from radial flows varies like cos p. We fit the center-to-limb variation of the mean squared velocity signal to a straight line in sin(exp 2) rho over the central portion of the disk. The intercept of this line at disk center gives the amplitude of the radial component of the flow. The slope of the line gives the amplitude of the horizontal component. We find that the radial flows for typical supergranules have speeds about 10% that of their associated horizontal flows or about 30 m/s. The ratio of the radial to horizontal flow speed increases from 9% to about 18% as the size of the cells decreases from 〉 60 Mm to approximately 5 Mm. We use data simulations to check these results and find a ratio that increases from 5% to only about 12% over the same range of cell sizes. These smaller ratios are attributed to an underestimation of the horizontal flow speeds due to the fact that, the transverse component of the horizontal flow is not detected by the Doppler measurements.
    Schlagwort(e): Astrophysics
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: NASA researchers were tasked to study the potential for radio signals to excite an aircraft fuel quantity indication system (FQIS) enough to cause arcing, sparking or excessive heating within a fuel tank. Computational techniques were used to determine the threat from external high intensity radiated field (HIRF) transmitters nearby, like shipboard and airborne RADAR systems. Experimental methods were used to determine the threat from Portable Electronic Devices (PEDs) carried aboard by passengers. To support this work, unique electromagnetic coupling measurements were performed on a retired Boeing 747 aircraft, and new test and analysis methods were developed that may be applied to other FQIS designs as well as other aircraft electronic systems.
    Schlagwort(e): Electronics and Electrical Engineering
    Materialart: Paper No. 3A1 , Digital Avionics Systems Conference; Oct 07, 2000; Philadelphia, PA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-13
    Beschreibung: Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples from ISS flight 2A showed that contaminants in the Zarya module were at higher concentrations than the Unity module. At the crew's first entry, the amount of non-methane volatile organic compounds (NMVOCs) in Zarya was 23 Mg/cubic meter, whereas in the amount of NMVOCs in Unity was 5.3 mg/cubic meter. Approximately 26 hours later at egress from the modules, the NMVOCs were comparable indicating good mixing of the atmospheres. The 2A crew reported no adverse health effects related to air pollution during their flight. Ingress air samples from 2A.1, which was flown more than 5 months after 2A, again showed that the Zarya had accumulated more unscrubbed pollutants than Unity. The NMVOCs in Unity were 3.5 mg/cubic meter, whereas the were 20 mg/cubic meter in Zarya. After almost 80 hours of ISS operations, the NMVOCs were 7.5 and 12 mg/cubic meter in Unity and Zarya, respectively. This suggests that the atmospheres in the modules were not mixing very well. The 2A.1 crew felt that the air quality in Zarya deteriorated when they were working in a group at close quarters, when the panels had been removed, and after they had worked in an area for some time. The weight of evidence suggests that human metabolic products (carbon dioxide, water vapor, heat) were not being effectively removed from the crew's work area, and these caused their symptoms. Additional local measurements of pollutants are planned for the 2A.2 mission to the ISS.
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: JSC-CN-5921 , Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-13
    Beschreibung: The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.
    Schlagwort(e): Solar Physics
    Materialart: GSFC-E-DAA-TN9964 , Solar Physics; 275; 2-Jan; 375-390
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-07-13
    Beschreibung: Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; May 07, 2011 - May 11, 2011; San Diego, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...