ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • NASA Technical Reports  (2)
  • 1975-1979  (2)
  • 1976  (2)
Collection
  • Other Sources  (2)
Source
Years
  • 1975-1979  (2)
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Some questions dealing with the nature and history of a large metallic core within Mercury are considered. These include the existence of a core, its size, whether it is fluid or solid, the timescale for core formation, the geological consequences of core formation, and whether such consequences are consistent with the surface geology. Several indirect lines of evidence are discussed which suggest the presence of a large iron-rich core. A core-formation model is examined in which core infall is accompanied by an increase of 17 km in planetary radius, an increase of 700 K in mean internal temperature, and substantial melting of the mantle. It is argued that if the core differentiated from an originally homogeneous planet, that event must have predated the oldest geological units comprising most of the planetary surface. A convective dynamo model for the source of Mercury's magnetic field is shown to conflict with cosmochemical models that do not predict a substantial radiogenic heat source in the core.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus; 28; Aug. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The paper discusses how features of the surface geology of the moon and also Mars and Mercury impose constraints on the volumetric expansion or contraction of a planet and consequently provide a test of thermal history models. The moon has changed very little in volume over the last 3.8 b.y. Thermal models satisfying this constraint involve early heating and perhaps melting of the outer 200 km of the moon and an initially cold interior. Mercury has contracted by about 2 km in radius since emplacement of its present surface, so core formation must predate that surface. A hot initial temperature distribution is implied.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar Science Conference; Mar 15, 1976 - Mar 19, 1976; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...