ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Articles: DFG German National Licenses  (1)
Collection
  • Articles  (1)
Source
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 3253-3266 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Release of lysozyme from poly(ethylene-co-vinyl acetate) microbeads into solution was examined. The lysozyme exists as solid particles dispersed randomly throughout the polymer matrix. Microbeads were prepared in a novel fashion using electrostatics to reduce bead sizes, which ranged from 0.6-0.43 to 1.0-0.85 mm. The release into distilled water was diffusionally controlled, followed by a period of osmotically controlled transport, which lasted for up to 400 hours for 1.0-0.85-mm microbeads. The osmotically controlled release rate increased as the microbead radius increased, and was time- and weakly particle-size-dependent, decreasing with time and being initially greater for larger particles, but eventually becoming greater for smaller particles as time progressed. For example, for 0.60-0.43-mm microbeads, the initial mass fraction release rate from microbeads containing 106-75-μm particles was 0.0024 h-1, while that of microbeads containing ≤ 53-μm particles was 0.0068 h-1. At 100 h, however, the release rate from microbeads containing 106-75-μm particles was 0.0024 h-1, while that of microbeads containing ≤ 53-μm particles was 0.0029 h-1. The total fraction of agent released from the polymer matrix increased, as the agent particle size increased and as the microbead radius decreased. A mathematical model of the osmotic release mechanism developed was consistent with the experimental observations. This model can be used in the design of controlled release products for pharmaceutical, agricultural and veterinarial applications.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...