ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Articles: DFG German National Licenses  (2)
  • Springer  (2)
Collection
  • Articles  (2)
Source
Publisher
Years
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Communications in mathematical physics 168 (1995), S. 249-264 
    ISSN: 1432-0916
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract We present a new version ofq-Minkowski space, which has both a coaddition law and anSL q (2, ℂ) decomposition. The additive structure forms a braided group rather than a quantum one. In the process, we obtain aq-Lorentz group which coacts covariantly on thisq-Minkowski space.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Biodegradation ; Azo dyes ; Orange II ; Orange I ; Arylsulfonates ; Sulfanilic acid ; Aminonaphthol ; Pseudomonas sp. ; Azoreductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pseudomonas strains K22 and KF46 had previously been isolated from chemostat cultures that were adapted to growth on 1-(4′-carboxyphenylazo)-4-naphthol (carboxy-Orange I) and 1-(4′-carboxyphenylazo)-2-naphthol (carboxy-Orange II), respectively. They were tested for their ability to degrade the sulfonated analogs 1-(4′-sulfophenylazo)-4-naphthol (Orange I) and 1-(4′-sulfophenylazo)-4-naphthol (Orange I) and 1-(4′-sulfophenylazo)-2-naphthol (Orange II). The sulfonated dyes served as models for commercially used textile dyes, which are known to be recalcitrant in aerobic waste water treatment plants. Substitution of sulfo for carboxy groups led to disturbance of the degradative pathways. The enzymes initiating degradation, the Orange I azoreductase and the Orange II azoreductase, accepted both, carboxylated and sulfonated dyes. Experiments with specifically 14C-labelled dyes indicated that sulfanilic acid, one of the products of the initial fission of the dyes, was channeled into a dead-end pathway. In the case of Orange I degradation, reactive metabolites of sulfanilic acid, presumably catechols, coupled with aminonaphthol, the other product of the azoreductase reaction. Orange II was degraded by strain KF46 when another suitable carbon source (e.g. 4-hydroxybenzoate) was supplied. Most but not all of the internally generated sulfanilic acid was excreted and intermolecular coupling of aromatic metabolites was not observed. However, the presence of sulfanilic acid and/or its metabolities still interfered with the degradation of the aminonaphthol part of the dye molecule and complete mineralization was not achieved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...