ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Articles: DFG German National Licenses  (2)
  • Blackwell Publishing, Inc  (2)
  • Energy, Environment Protection, Nuclear Power Engineering  (2)
  • Technology
Collection
  • Articles  (2)
Source
  • Articles: DFG German National Licenses  (2)
Years
Topic
  • Energy, Environment Protection, Nuclear Power Engineering  (2)
  • Technology
  • Geography  (1)
  • 1
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: This article summarizes a quantitative microbial risk assessment designed to characterize the public health impact of consumption of shell eggs and egg products contaminated with Salmonella Enteritidis (SE). This risk assessment's objectives were to: (1) establish the baseline risk of foodborne illness from SE, (2) identify and evaluate potential risk mitigation strategies, and (3) identify data gaps related to future research efforts. The risk assessment model has five modules. The Egg Production module estimates the number of eggs produced that are SE-contaminated. Shell Egg Processing, Egg Products Processing, and Preparation & Consumption modules estimate the increase or decrease in the numbers of SE organisms in eggs or egg products as they pass through storage, transportation, processing, and preparation. A Public Health Outcomes module then calculates the incidence of illnesses and four clinical outcomes, as well as the cases of reactive arthritis associated with SE infection following consumption. The baseline model estimates an average production of 2.3 million SE-contaminated shell eggs/year of the estimated 69 billion produced annually and predicts an average of 661,633, human illnesses per year from consumption of these eggs. The model estimates ≈ 94% of these cases recover without medical care, 5% visit a physician, an additional 0.5% are hospitalized, and 0.05% result in death. The contribution of SE from commercially pasteurized egg products was estimated to be negligible. Five mitigation scenarios were selected for comparison of their individual and combined effects on the number of human illnesses. Results suggest that mitigation in only one segment of the farm-to-table continuum will be less effective than several applied in different segments. Key data gaps and areas for future research include the epidemiology of SE on farms, the bacteriology of SE in eggs, human behavior in food handling and preparation, and human responses to SE exposure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing, Inc
    Risk analysis 22 (2002), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Incidents can be defined as low-probability, high-consequence events and lesser events of the same type. Lack of data on extremely large incidents makes it difficult to determine distributions of incident size that reflect such disasters, even though they represent the great majority of total losses. If the form of the incident size distribution can be determined, then predictive Bayesian methods can be used to assess incident risks from limited available information. Moreover, incident size distributions have generally been observed to have scale invariant, or power law, distributions over broad ranges. Scale invariance in the distributions of sizes of outcomes of complex dynamical systems has been explained based on mechanistic models of natural and built systems, such as models of self-organized criticality. In this article, scale invariance is shown to result also as the maximum Shannon entropy distribution of incident sizes arising as the product of arbitrary functions of cause sizes. Entropy is shown by simulation and derivation to be maximized as a result of dependence, diversity, abundance, and entropy of multiplicative cause sizes. The result represents an information-theoretic explanation of invariance, parallel to those of mechanistic models. For example, distributions of incident size resulting from 30 partially dependent causes are shown to be scale invariant over several orders of magnitude. Empirical validation of power law distributions of incident size is reviewed, and the Pareto (power law) distribution is validated against oil spill, hurricane, and insurance data. The applicability of the Pareto distribution, in particular, for assessment of total losses over a planning period is discussed. Results justify the use of an analytical, predictive Bayesian version of the Pareto distribution, derived previously, to assess incident risk from available data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...