ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Articles: DFG German National Licenses  (3)
  • American Institute of Physics (AIP)  (2)
  • Springer  (1)
  • 1995-1999  (3)
  • 1940-1944
  • 1905-1909
  • Electrical Engineering, Measurement and Control Technology  (3)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 1238-1243 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Ultra-short-pulse reflectometry is studied by means of the numerical integration of one- and two-dimensional full-wave equations for ordinary and extraordinary modes propagating in a plasma. The numerical calculations illustrate the use of the reflection of ultra-short-pulse microwaves as an effective probe of the density or magnetic profile in the presence of density or magnetic fluctuations in the plasma. Bragg resonance effects can be identified in the reflected signals, which give information on fluctuations. It is also demonstrated that ultra-short-pulse reflectometry can be used to perform correlation reflectometry measurements in which correlation lengths for density fluctuations are deduced from the observed cross-correlation function of phase shifts as a function of frequency. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Ultra-short-pulse reflectometry is studied by means of the numerical integration of one- and two-dimensional full-wave equations for ordinary and extraordinary modes propagating in a plasma. The numerical calculations illustrate the use of the reflection of ultra-short-pulse microwaves as an effective probe of the density or magnetic profile in the presence of density or magnetic fluctuations in the plasma. Bragg resonance effects can be identified in the reflected signals, which give information on fluctuations. It is also demonstrated that ultra-short-pulse reflectometry can be used to perform correlation reflectometry measurements in which correlation lengths for density fluctuations are deduced from the observed cross-correlation function of phase shifts as a function of frequency. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-482X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Thin films of iron pyrite (FeS2) have been prepared on glass and glassy carbon substrates by low pressure metal organic chemical vapour deposition (LP-MOCVD) using iron pentacarbonyl (Fe(CO)5) and di-tert.-butyldisulphide (TBDS) as precursors. The TBDS partial pressure was varied from 1 to 100 Pa for different iron pentacarbonyl partial pressures (0.25, 0.5 and 1 Pa) while all other parameters were maintained constant. It was found that there is a critical TBDS-partial pressure of about 30 Pa for a deposition temperature of 475 °C, where a drastic change in the layer properties occurs. Below this TBDS partial pressure pyrrhotite type phases (Fe1-xS) will be formed although there is a sulphur precursor excess in the gas phase. If the layers contain pyrrhotite, the electrical properties of the FeSx-films are changed significantly. The occurrence of the pyrrhotite phases does not depend on the growth rate, hence it is not controlled kinetically. Therefore, the sulphur pressure above the growing pyrite film is the important parameter controlling the solid phase. The present investigation shows that, in order to prepare pyrite thin films of good electronic quality, one has to take care to avoid the secondary sulphur-iron phases even in very small concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...