ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Articles (OceanRep)  (3)
Collection
  • Other Sources  (3)
Source
Years
  • 1
    Publication Date: 2020-08-04
    Description: In 1997, a unique hydrographic and chlorofluorocarbon (CFC: component CFC-11) dataset was obtained in the subpolar North Atlantic. To estimate the synopticity of the 1997 data, the recent temporal evolution of the CFC and Labrador Sea Water (LSW) thickness fields are examined. In the western Atlantic north of 50°N, the LSW thickness decreased considerably from 1994–97, while the mean CFC concentrations did not change much. South of 50°N and in the eastern Atlantic, the CFC concentration increased with little or no change in the LSW thickness. On shorter timescales, local anomalies due to the presence of eddies are observed, but for space scales larger than the eddies the dataset can be treated as being synoptic over the 1997 observation period. The spreading of LSW in the subpolar North Atlantic is described in detail using gridded CFC and LSW thickness fields combined with Profiling Autonomous Lagrangian Circulation Explorer (PALACE) float trajectories. The gridded fields are also used to calculate the CFC-11 inventory in the LSW from 40° to 65°N, and from 10° to 60°W. In total, 2300 ± 250 tons of CFC-11 (equivalent to 16.6 million moles) were brought into the LSW by deep convection. In 1997, 28% of the inventory was still found in the Labrador Sea west of 45°W and 31% of the inventory was located in the eastern Atlantic. The CFC inventory in the LSW was used to estimate the lower limits of LSW formation rates. At a constant formation rate, a value of 4.4–5.6 Sv (Sv ≡ 106 m3 s−1) is obtained. If the denser modes of LSW are ventilated only in periods with intense convection, the minimum formation rate of LSW in 1988–94 is 8.1–10.8 Sv, and 1.8–2.4 Sv in 1995–97
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-09-12
    Description: Improved monitoring of non-CO2 greenhouse gases in air samples is presented, achieved using a new analytical system based on preconcentration, gas-chromatography and mass spectrometry. In addition to the major HFCs, HCFCs and CFCs, the new observations include the first in situ time series of the C1–C3 PFCs (CF4, C2F6 and C3F8) and the more volatile of the HFCs (CHF3, CH2F2, CH3CF3) alongside SF6, all of which are now monitored routinely as part of the Advanced Global Atmospheric Gases Experiment (AGAGE). Observed trends in newly monitored species are shown, obtained from 1–2 years continuous in situ air analyses at remote monitoring sites at Mace Head (Ireland) and Cape Grim (Australia). Observed deviations in the air background for these gas species are linked to modelled trajectories of air masses arriving at the monitoring stations to indicate potential source regions for emissions in Europe and Australia. In addition, preliminary estimates of 2004 mixing ratio growth rates of compounds are deduced from the observations, which highlight the importance of continuous atmospheric monitoring for verification of consumption-based emission estimates of non-CO2 greenhouse gases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Significant changes have occurred in the anthropogenic emissions of many compounds related to the Kyoto and Montreal Protocols within the past 20 years and many of their atmospheric abundances have responded dramatically. Additionally, there are a number of related natural compounds with underdetermined source or sink budgets. A new instrument, Medusa, was developed to make the high frequency in situ measurements required for the determination of the atmospheric lifetimes and emissions of these compounds. This automated system measures a wide range of halocarbons, hydrocarbons, and sulfur compounds involved in ozone depletion and/or climate forcing, from the very volatile perfluorocarbons (PFCs, e.g., CF4 and CF3CF3) and hydrofluorocarbons (HFCs, e.g., CH3CF3) to the higher-boiling point solvents (such as CH3CCl3 and CCl2CCl2) and CHBr3. A network of Medusa systems worldwide provides 12 in situ ambient air measurements per day of more than 38 compounds of part per trillion mole fractions and precisions up to 0.1% RSD at the five remote field stations operated by the Advanced Global Atmospheric Gases Experiment (AGAGE). This custom system couples gas chromatography/mass spectrometry (GC/MSD) with a novel scheme for cryogen-free low-temperature preconcentration (−165 °C) of analytes from 2 L samples in a two-trap process using HayeSep D adsorbent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...