ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Articles (OceanRep)  (3)
  • Taylor & Francis  (2)
  • ASCE (American Society of Civil Engineers)  (1)
  • 1
    Publication Date: 2018-08-15
    Description: Observations of the dinoflagellate Dinophysis norvegica in the Baltic Sea during the summers of 1991–1993 indicate that maximal abundances (c 40–150 × 103 cells l-1) were found at the thermocline, typically at 12°C. Maximum densities were usually between 12 and 15 m where 2·9% and 1·5% of surface photon irradiances, respectively, were measured. No diel vertical migration was observed, and cell densities in the mixed layer were always low. Photosynthesis versus irradiance measurements with an oxygen electrode indicated that these populations had a P max of 2·47 [coefficient of variation (CV) 7·3%] and 3·4 (CV 4·7%) mg O2 mg Chl a -1 h-1, and compensation values of photon irradiance were 16·5 and 83 μmol m-2 s-1 in 1992 and 1993, respectively. Both oxygen electrode and 14C light/dark bottle measurements indicated that D. norvegica had very little net photosynthesis at the depths where it was most abundant; it would have had about 2·5-fold greater capacity at photon irradiances present closer to the surface. Calculated carbon doubling times via photosynthesis averaged 4–11 months. There was no observable diel rhythym of DNA synthesis, suggesting that either D. norvegica was not dividing synchronously (asynchronous division is common in heterotrophs) or not dividing at all. Electron microscopy did not reveal the presence of food vacuoles, but feeding and digestion could have been extracellular. The data suggest that this species is a mixotroph which received its primary nutrition via heterotrophic means during our observation periods in the summers of 1991–1993.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ASCE (American Society of Civil Engineers)
    Publication Date: 2023-05-24
    Description: Mathematical models have been developed that can completely describe the distribution of sediment concentration from the channel bed to the water surface. These models can be used to estimate the mean (depth-averaged) sediment concentration by a quick, point sampling in river engineering practice. The developed models are products of a combined application of the deterministic and probabilistic concepts. The complementary nature of the two concepts strengthens the methodology of describing the various features of sediment transport. The models incorporate a velocity distribution equation that corresponds to a probability distribution derived by maximizing the information entropy. The probability distribution is a compact description of the system at a channel section, and its resilience or stability explains the applicability of the developed models of velocity and sediment distributions in a wide range of flows, steady or unsteady.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Long-term changes in the life history and behaviour of seabirds during the non-breeding season can reflect shifts in environmental conditions. However, long-term marine studies are scarce, particularly on southern hemisphere seabirds. Here, we used moult scores from 86 Brown Skuas (Stercorarius antarcticus lonnbergi), a large predatory seabird breeding on the Chatham Islands, Aotearoa/New Zealand to model both the timing and duration of primary feather moult. In addition, we analysed stable isotope values (δ13C and δ15N) from 62 modern (2014–16) and ten museum tail feathers. These data provide insights into the non-breeding behaviour of Brown Skua. Interestingly, our results show that the primary feather moult occurred prior to birds departing the colony, starting on average on 2 January ± 5 days (SE). The average start of primary feather moult occurred five days prior to the end of breeding (7 January ± 10 days (SD)) and 42 days before the birds departed the colony (13 February ± 11 days (SD)). The average duration of primary feather moult was 189 ± 14 days (SE). Importantly, low δ13C values in four females suggested that tail feather moult might also occur while skuas are at the colony. There was no difference in tail feather δ13C and δ15N values between any pairwise comparison of modern and museum years. However, values of δ15N from tail feathers sampled in 2014 were different from those sampled in 2015 and 2016. This large annual variation in δ15N values from tail feathers over such a short period makes long-term comparisons difficult to interpret, particularly between years with low sample sizes. While the stable isotope analyses of tail feathers are informative, we recommend future studies of skuas sample the primary coverts rather than tail feathers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...