ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • Articles (OceanRep)  (7)
  • AGU (American Geophysical Union)  (7)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (4). pp. 1529-1536.
    Publication Date: 2020-11-04
    Description: Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-02
    Description: Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-04
    Description: Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5–7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km) and strike (~005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7–7.3 km s-1. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-27
    Description: We present the first detailed 2D seismic tomographic image of the trench-outer rise, fore- and back-arc of the Tonga subduction zone. The study area is located approximately 100 km north of the collision between the Louisville hot spot track and the overriding Indo-Australian plate where ~80 Ma old oceanic Pacific plate subducts at the Tonga Trench. In the outer rise region, the upper oceanic plate is pervasively fractured and most likely hydrated as demonstrated by extensional bending-related faults, anomalously large horst and graben structures, and a reduction of both crustal and mantle velocities. The 2D velocity model presented shows uppermost mantle velocities of ~7.3 km/s, ~10% lower than typical for mantle peridotite (~30% mantle serpentinization). In the model, Tonga arc crust ranges between 7 and 20 km in thickness, and velocities are typical of arc-type igneous basement with uppermost and lowermost crustal velocities of ~3.5 and ~7.1 km/s, respectively. Beneath the inner trench slope, however, the presence of a low velocity zone (4.0–5.5 km/s) suggests that the outer fore-arc is probably fluid-saturated, metamorphosed and disaggregated by fracturing as a consequence of frontal and basal erosion. Tectonic erosion has, most likely, been accelerated by the subduction of the Louisville Ridge, causing crustal thinning and subsidence of the outer fore-arc. Extension in the outer fore-arc is evidenced by (1) trenchward-dipping normal faults and (2) the presence of a giant scarp (~2 km offset and several hundred kilometers long) indicating gravitational collapse of the outermost fore-arc block. In addition, the contact between the subducting slab and the overriding arc crust is only 20 km wide, and the mantle wedge is characterized by low velocities of ~7.5 km/s, suggesting upper mantle serpentinization or the presence of melts frozen in the mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-09
    Description: Monowai is a submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. In the past, activity at the volcano had been intermittently observed in the form of fallout at the sea surface, discolored water, changes in seafloor topography, and T phase seismicity, but there is no continuous record for more recent years. In this study, we investigated 3.5 years of recordings at a hydrophone array of the International Monitoring System (IMS), located near Juan Fernández Islands for long‐range underwater sound waves from Monowai. Results from direction‐of‐arrival calculations and density‐based spatial clustering indicate that 82 discrete episodes of activity occurred between July 2003 and March 2004, and from April 2014 to January 2017. Volcanic episodes are typically spaced days to weeks apart, range from hours to days in length, and amount to a cumulative sum of 137 days of arrivals in total, making Monowai one of the most active submarine arc volcanoes on Earth. The resolution of the hydrophone recordings surpasses broadband network data by at least one order of magnitude, identifying seismic events as low as 2.2 mb in the Kermadec Arc region. Further observations suggest volcanic activity at a location approximately 400 km north of Monowai in the Tonga Arc, and at Healy or Brothers volcano in the southern Kermadec Arc. Our findings are consistent with previous studies and highlight the exceptional capabilities of the IMS network for the scientific study of active volcanism in the global ocean. Supporting Information
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The Hawaiian-Emperor seamount chain in the Pacific Ocean has provided fundamental insights into hotspot generated intraplate volcanism and the long-term strength of oceanic lithosphere. However, only a few seismic experiments to determine crustal and upper mantle structure have been carried out on the Hawaiian Ridge, and no deep imaging has ever been carried out along the Emperor seamounts. Here, we present the results of an active source seismic experiment using 29 Ocean-Bottom Seismometers (OBS) carried out along a strike profile of the seamounts in the region of Jimmu and Suiko guyots. Joint reflection and refraction tomographic inversion of the OBS data show the upper crust is highly heterogeneous with P wave velocities 〈4–5 km s−1, which are attributed to extrusive lavas and clastics. In contrast, the lower crust is remarkably homogeneous with velocities of 6.5–7.2 km s−1, which we attribute to oceanic crust and mafic intrusions. Moho is identified by a strong PmP arrival at offsets of 20–80 km, yielding depths of 13–16 km. The underlying mantle is generally homogeneous with velocities in the range 7.9–8.0 km s−1. The crust and mantle velocity structure has been verified by gravity modeling. While top of oceanic crust prior to volcano loading is not recognized as a seismic or gravity discontinuity, flexural modeling reveals a ∼5.0–5.5 km thick preexisting oceanic crust that is overlain by a ∼8 km thick volcanic edifice. Unlike at the Hawaiian Ridge, we find no evidence of magmatic underplating.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The intraplate Hawaiian-Emperor Seamount Chain has long been considered a hotspot track generated by the motion of the Pacific plate over a deep mantle plume, and an ideal feature therefore for studies of volcanic structure, magma supply, plume-crust interaction, flexural loading, and upper mantle rheology. Despite their importance as a major component of the chain, the Emperor Seamounts have been relatively little studied. In this paper, we present the results of an active-source wide-angle reflection and refraction experiment conducted along an ocean-bottom-seismograph (OBS) line oriented perpendicular to the seamount chain, crossing Jimmu guyot. The tomographic P wave velocity model, using ∼20,000 travel times from 26 OBSs, suggests that there is a high-velocity (〉6.0 km/s) intrusive core within the edifice, and the extrusive-to-intrusive ratio is estimated to be ∼2.5, indicating that Jimmu was built mainly by extrusive processes. The total volume for magmatic material above the top of the oceanic crust is ∼5.3 × 104 km3, and the related volume flux is ∼0.96 m3/s during the formation of Jimmu. Under volcanic loading, the ∼5.3-km-thick oceanic crust is depressed by ∼3.8 km over a broad region. Using the standard relationships between Vp and density, the velocity model is verified by gravity modeling, and plate flexure modeling indicates an effective elastic thickness (Te) of ∼14 km. Finally, we find no evidence for large-scale magmatic underplating beneath the pre-existing crust.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...