ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Open Access-Papers  (2)
Collection
  • Articles  (2)
Source
Years
  • 1
    Publication Date: 2019-07-17
    Description: An updated set of time series of derived aerosol optical depth (AOD) and Ångström’s exponent a from a number of Arctic and Antarctic stations was analyzed to determine the long-term variations of these two parameters. The Arctic measurements were performed at Ny-Ålesund (1991e2010), Barrow (1977e2010) and some Siberian sites (1981e1991). The data were integrated with Level 2.0 AERONET sun-photometer measurements recorded at Hornsund, Svalbard, and Barrow for recent years, and at Tiksi for the summer 2010. The Antarctic data-set comprises sun-photometer measurements performed at Mirny (1982e2009), Neumayer (1991e2004), and Terra Nova Bay (1987e2005), and at South Pole (1977e2010). Analyses of daily mean AOD were made in the Arctic by (i) adjusting values to eliminate volcanic effects due to the El Chichón, Pinatubo, Kasatochi and Sarychev eruptions, and (ii) selecting the summer background aerosol data from those affected by forest fire smoke. Nearly null values of the long-term variation of summer background AOD were obtained at Ny-Ålesund (1991e2010) and at Barrow (1977e2010). No evidence of important variations in AOD was found when comparing the monthly mean values of AOD measured at Tiksi in summer 2010 with those derived from multi-filter actinometer measurements performed in the late 1980s at some Siberian sites. The long-term variations of seasonal mean AOD for Arctic Haze (AH) conditions and AH episode seasonal frequency were also evaluated, finding that these parameters underwent large fluctuations over the 35-year period at Ny-Ålesund and Barrow, without presenting well- defined long-term variations. A characterization of chemical composition, complex refractive index and single scattering albedo of ground-level aerosol polydispersions in summer and winterespring is also presented, based on results mainly found in the literature. The long-term variation in Antarctic AOD was estimated to be stable, within `0.10% per year, at the three coastal sites, and nearly null at South Pole, where a weak increase was only recently observed, associated with an appreciable decrease in a, plausibly due to the formation of thin stratospheric layers of ageing volcanic particles. The main characteristics of chemical composition, complex refractive index and single scattering albedo of Antarctic aerosols are also presented for coastal particles sampled at Neumayer and Terra Nova Bay, and continental particles at South Pole.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): D06204, doi:10.1029/2008JD011257.
    Description: The paper presents the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). MAN deploys Microtops handheld Sun photometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. A short summary of the existing data, collected on board ships of opportunity during the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is presented. Globally averaged oceanic aerosol optical depth (derived from island-based AERONET measurements) at 500 nm is ∼0.11 and Angstrom parameter (computed within spectral range 440–870 nm) is calculated to be ∼0.6. First results from the cruises contributing to the Maritime Aerosol Network are shown. MAN ship-based aerosol optical depth compares well to simultaneous island and near-coastal AERONET site AOD.
    Description: The work of Tymon Zielinski was supported by Polish national grant AERONET59.
    Keywords: Aerosol optical depth ; Maritime aerosol ; Network
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...