ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Open Access-Papers  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Company of Biologists, 2015. This article is posted here by permission of The Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 218 (2015): 3091-3101, doi:10.1242/jeb.120501.
    Description: Toothed whales produce echolocation clicks with source parameters related to body size; however, it may be equally important to consider the influence of habitat, as suggested by studies on echolocating bats. A few toothed whale species have fully adapted to river systems, where sonar operation is likely to result in higher clutter and reverberation levels than those experienced by most toothed whales at sea because of the shallow water and dense vegetation. To test the hypothesis that habitat shapes the evolution of toothed whale biosonar parameters by promoting simpler auditory scenes to interpret in acoustically complex habitats, echolocation clicks of wild Amazon river dolphins were recorded using a vertical seven-hydrophone array. We identified 404 on-axis biosonar clicks having a mean SLpp of 190.3±6.1 dB re. 1 µPa, mean SLEFD of 132.1±6.0 dB re. 1 µPa2s, mean Fc of 101.2±10.5 kHz, mean BWRMS of 29.3±4.3 kHz and mean ICI of 35.1±17.9 ms. Piston fit modelling resulted in an estimated half-power beamwidth of 10.2 deg (95% CI: 9.6–10.5 deg) and directivity index of 25.2 dB (95% CI: 24.9–25.7 dB). These results support the hypothesis that river-dwelling toothed whales operate their biosonars at lower amplitude and higher sampling rates than similar-sized marine species without sacrificing high directivity, in order to provide high update rates in acoustically complex habitats and simplify auditory scenes through reduced clutter and reverberation levels. We conclude that habitat, along with body size, is an important evolutionary driver of source parameters in toothed whale biosonars.
    Description: Field work was funded by Danish National Research Council grants to P.T.M., Associação Amigos do Peixe Boi da Amazônia (AMPA) and Petrobras Ambiental grants to V.M.F.d.S., Augustinus Fonden grants to M.L. and a travelling fellowship awarded to M.d.F. by Journal of Experimental Biology. M.L. was funded by a PhD stipend from the Faculty of Science and Technology, Aarhus University, and National Research Council grants to P.T.M. F.H.J. was funded by a Carlsberg Foundation travel grant.
    Description: 2016-10-07
    Keywords: Beamwidth ; Clutter ; Directionality ; Echolocation ; Habitat ; Toothed whale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2018. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 143 (2018): 2564, doi: 10.1121/1.5034174.
    Description: The Australian snubfin dolphin (Orcaella heinsohni) is endemic to Australian waters, yet little is known about its abundance and habitat use. To investigate the feasibility of Passive Acoustic Monitoring for snubfin dolphins, biosonar clicks were recorded in Cygnet Bay, Australia, using a four-element hydrophone array. Clicks had a mean source level of 200 ± 5 dB re 1 μPa pp, transmission directivity index of 24 dB, mean centroid frequency of 98 ± 9 kHz, and a root-mean-square bandwidth of 31 ± 3 kHz. Such properties lend themselves to passive acoustic monitoring, but are comparable to similarly-sized delphinids, thus requiring additional cues to discriminate between snubfins and sympatric species.
    Description: We thank the Fitzroy Basin Association for funding fieldwork in Gladstone May 2013 as well as the Australian Marine Mammal Centre who funded J.N.S. with the Bill Dawbin Fellowship and provided fieldwork funding. P.T.M. was funded by a Sir Walter Murdoch Honorary Professorship from Murdoch University and frame grants from FNU. F.H.J. was supported by the office of naval research (N00014-1410410) and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies, Aarhus University, under EU's FP7 programme (Agreement No. 609033).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...