ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Open Access-Papers  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 16 (2006): 2091–2122, doi:10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2.
    Description: Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O) and dinitrogen (N2), is important to primary production, water quality and the chemistry and physics of the atmosphere at ecosystem, landscape, regional and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses and future prospects for the different methods. Methodological approaches covered include; 1) acetylene-based methods, 2) 15N tracers, 3) direct N2 quantification, 4) N2/Ar ratio quantification, 5) mass balance approaches, 6) stoichiometric approaches, 7) methods based on stable isotopes, 8) in situ gradients with atmospheric environmental tracers and 9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.
    Keywords: Denitrification ; Greenhouse effect ; Nitrate ; Nitric oxide nitrogen ; Nitrous oxide ; Stable isotopes ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 822728 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...