ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (38)
  • Other Sources
  • Open Access-Papers  (38)
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (38)
  • 2010-2014  (38)
Collection
  • Articles  (38)
  • Other Sources
Source
  • Open Access-Papers  (38)
Years
Year
  • 1
    Publication Date: 2022-05-04
    Description: The recent Eyjafjallajökull (Iceland) eruption strikingly under-lined the vulnerability of a globalized society to the atmospheric dispersal of volcanic clouds from even moderate-size eruptions. Ash aggregation controls volcanic clouds dispersal by prematurely remov-ing fi ne particles from the cloud and depositing them more proxi-mally. Physical parameters of ash aggregates have been modeled and derived from ash fallout deposits of past eruptions, yet aggregate sedimentation has eluded direct measurement, limiting our ability to predict the dispersal of volcanic clouds. Here we use fi eld-based, high-speed video analysis together with laboratory experiments to provide the fi rst in situ investigation and parameterization of the physical fea-tures and settling dynamics of ash aggregates from a volcanic cloud. In May 2010, high-speed video footage was obtained of both ash par-ticles and aggregates settling from the Eyjafjallajökull volcano erup-tion cloud at a distance of 7 km from the vent; fallout samples were collected simultaneously. Experimental laboratory determinations of the density, morphology, and settling velocity of individual ash par-ticles enable their distinction from aggregates. The combination of fi eld and experimental analyses allows a full characterization of the size, settling velocity, drag coeffi cient, and density distributions of ash aggregates as well as the size distribution of their component par-ticles. We conclude that ash aggregation resulted in a tenfold increase in mass sedimentation rate from the cloud, aggravating the ash haz-ard locally and modifying cloud dispersal regionally. This study pro-vides a valuable tool for monitoring explosive eruptions, capable of providing robust input parameters for models of cloud dispersal and consequent hazard forecast
    Description: Published
    Description: 891–894
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: aggregation ; ash ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper the results of an integrated analysis of ground displacement data, local seismic activity and DEM image analysis, in GIS environment, which has been performed for the Campi Flegrei volcanic area, are presented and discussed. The study has been carried out for the recent bradyseismic crises of 2000-2006, with the aim of working out a preliminary interpretation of the recent dynamics of the area.
    Description: Comitato organizzatore EUREGEO 2009
    Description: Published
    Description: Monaco
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Campi Flegrei ; bradyseismic crises ; ground displacement ; tiltmetric data ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: The Campi Flegrei volcanic district formed within an extensional tectonic regime that was active in the region since the Plio-Quaternary times (Rosi & Sbrana, 1987). The tectonic elements outcropping in the area are mainly correlated with a circular geometry of deformation, and could also have been inherited by the regional NWSE and NE-SW normal faults; likely, such faults acted as preferential magma rise conduits feeding the active Campanian volcanoes. In this paper we apply a methodology for identifying the structural lineaments from morphometrical data analysis (Nappi et al. 2007) derived by processing of a very high resolution DTM. The criteria of lineament extraction is based on the identification of linear topographic surface features, such as valleys, ridges, breaks in slope, boundaries of elevated areas aligned in a rectilinear or slightly curvilinear shape and that distinctly differ from the patterns of adjacent features (Jordan et al., 2005). We have identified significant structural lineaments extracting the linear continuity of the morphostructural features observed on the DEM. Their spatial and statistical coherence has been examined and the comparison with the structural lineaments already known from literature has been carried out. The results of the analysis have been correlated to the spatial distribution of the recent seismicity (crises of 1982-1984 and 2004-2006) as well as with the local ground deformation measured through high precision levelling surveys over the last 20 years, together with the tiltmetric data continuously recorded over the last 10 years. The aim of this analysis is understanding the relationships between the recent dynamics of the area and its active structural lineaments.
    Description: Published
    Description: Puerto de la Cruz Tenerife, Canary Islands, Spain
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Campi Flegrei, Ground deformation, morphometric analysis ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: La realizzazione della stazione descritta nel presente rapporto è frutto di una collaborazione tra ricercatori della Sezione di Napoli dell’ Istituto Nazionale di Fisica Nucleare (INFN) e ricercatori dell’Osservatorio Vesuviano (OV), Sezione di Napoli dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV), e costituisce un’attività sperimentale per il monitoraggio dell’attività vulcanica dei Campi Flegrei.
    Description: INGV Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Radon ; spettrometria alfa ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: An extensive campaign of diffuse CO2 soil flux was carried out at the cone of Vesuvio in October 2006 with two main objectives: 1) to provide an estimation of CO2 diffusely discharged through the soils in the summit area and 2) to evidence those sectors of the volcano where structural and morphological conditions could favour the gas output. The survey consisted of 502 measurements of soil CO2 flux homogenously distributed over an area of about 1.8 km2. Results of this survey were compared with those obtained during a similar campaign carried out by Frondini et al. in 2000, from which we have taken and reinterpreted a subset of data belonging to the common investigated area. Graphical statistical analysis showed three overlapping populations in both surveys, evidencing the contribution of three different sources feeding the soil CO2 degassing process. The overall CO2 emission pattern of 2006 is coherent with that observed in 2000 and suggests that a value between 120 and 140 t/day of CO2 is representative of the total CO2 discharged by diffuse degassing from the summit area of Vesuvio. The preferential exhaling area lies in the inner crater, whose contribution resulted in 45.3% of the total CO2 emission in 2006 (with 62.8 t/day) and in 57.4% (with 70.3 t/day) in 2000, although its extension is only 13% of the investigated area. This highly emissive area correlated closely with the structural discontinuities of Vesuvio cone, mainly suggesting that the NW-SE trending tectonic line is actually an active fault leaking deep gas to the bottom of the crater. The drainage action of the fault could be enhanced by the “aspiration” effect of the volcanic conduit.
    Description: Published
    Description: S0449
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: open
    Keywords: CARBON DIOXIDE DEGASSING ; VESUVIO ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-03
    Description: Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed by CO2 (〉90 vol.%), contains appreciable quantities of H2S (0.35-6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and actually lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out by accumulation chamber. The viscous gas flux of some important discrete emissions has been also evaluated and the CO2 and H2S air concentration measured by portable devises and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15-159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day.
    Description: Published
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: partially_open
    Keywords: gas hazard ; hydrogen sulfide ; carbon dioxide ; Colli Albani volcano ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-07
    Description: The elemental fluxes and heat flow associated with large aquifer systems can be significant both at local and at regional scales. In fact, large amounts of heat transported by regional groundwater flow can affect the subsurface thermal regime, and the amount of matter discharged towards the surface by large spring systems can be significant relative to the elemental fluxes of surface waters. The Narni-Amelia regional aquifer system (Central Italy) discharges more than 13 m3 sec)1 of groundwater characterised by a slight thermal anomaly, high salinity and high pCO2. During circulation in the regional aquifer, groundwater reacts with the host rocks (dolostones, limestones and evaporites) and mixes with deep CO2-rich fluids of mantle origin. These processes transfer large amounts of dissolved substances, in particular carbon dioxide, and a considerable amount of heat towards the surface. Because practically all the water circulating in the Narni-Amelia system is discharged by few large springs (Stifone-Montoro), the mass and energy balance of these springs can give a good estimation of the mass and heat transported from the entire system towards the surface. By means of a detailed mass and balance of the aquifer and considering the soil CO2 fluxes measured from the main gas emission of the region, we computed a total CO2 discharge of about 7.8 · 109 mol a)1 for the whole Narni-Amelia system. Finally, considering the enthalpy difference between infiltrating water and water discharged by the springs, we computed an advective heat transfer related to groundwater flow of 410 ± 50 MW.
    Description: Published
    Description: 182-196
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide degassing ; heat flow ; regional aquifer ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-27
    Description: In this paper, a sensitivity analysis and procedure development for volcanic-plume sulfur dioxide and ash retrievals using ground thermal infrared camera have been carried out. The semiconductor device camera, considered as a reference, has a spectral range of 8–14 μm with noise equivalent temperature difference that is better than 100 mK at 300 K. The camera will be used to monitor and assess the hazards of Mt. Etna volcano to mitigate the risk and impact of volcanic eruptions on the civil society and transports. A minimum number of filters have been selected for sulfur dioxide (SO2) and volcanic ash retrievals. The sensitivity study has been carried out to determine the SO2 and volcanic ash minimum concentration detectable by the system varying the camera geometry and the atmospheric profiles. Results show a meaningful sensitivity increase considering high instrument altitudes and low camera-elevation angles. For all geometry configurations and monthly profiles, the sensitivity limit varies between 0.5 and 2 g · m−2 for SO2 columnar abundance and between 0.02 and 1 for ash optical depth. Two procedures to detect SO2 and ash, based on the least square fit method and on the brightness temperature difference (BTD) algorithm, respectively, have also been proposed. Results show that high concentration of atmospheric water vapor columnar content significantly reduces the ash-plume effect on the BTD. A water vapor-correction procedure introduced improves the ash retrievals and the cloud discrimination in every season, considering all the camera geometries.
    Description: Published
    Description: 1619-1628
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Remote sensing ; TIR-camera ; ground measurements ; sulphur dioxide ; volcanic ash ; Mt. Etna Mt. Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We conducted geophysical–geochemical measurements on a ∼2 kmN–S profile cutting across the Pernicana Fault, one of the most active tectonic features on the NE flank of Mt. Etna. The profile passes from the unstable E flank of the volcano (to the south) to the stable N flank and significant fluctuations in electrical resistivity, self-potential, and soil gas emissions (CO2, Rn and Th) are found. The detailed multidisciplinary analysis reveals a complex interplay between the structural setting, uprising hydrothermal fluids, meteoric fluids percolating downwards, ground permeability, and surface topography. In particular, the recovered fluid circulation model highlights that the southern sector is heavily fractured and faulted, allowing the formation of convective hydrothermal cells. Although the existence of a hydrothermal system in a volcanic area does not surprise, these results have great implications in terms of flank dynamics at Mt. Etna. Indeed, the hydrothermal activity, interacting with the Pernicana Fault activity, could enhance the flank instability. Our approach should be further extended along the full extent of the boundary between the stable and unstable sectors of Etna for a better evaluation of the geohazard in this active tectonic area.
    Description: This work was partly financed by the DPC-INGV FLANK and LAVA Projects.
    Description: Published
    Description: 137–142
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Pernicana Fault ; fluid circulation ; structural geology ; Etna ; magnetic ; electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel–levee structure. The levees comprise three packages. The basal package comprises an 80–150 m wide ′a′a flow in which a ∼2 m deep and ∼11 m wide channel became centred. This is capped by a second package of thin (〈45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised ′a′a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May–2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal ′a′a flow thickness yields effusion rates of 35 m3 s−1 for the opening phase, with the initial flow advancing across the mapped section at ∼10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90–420 m3 s−1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ∼2 m with an effusion rate of ∼35 m3 s−1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23–54 m3 s−1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed ′a′a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ∼10 h. The complex processes involved in levee–channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.
    Description: Published
    Description: 459-474
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Lava channel ; Levees ; Effusion rates ; Flow dynamics ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...