ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (23)
  • Open Access-Papers  (23)
  • Springer Nature  (14)
  • Springer Science and Business Media LLC  (9)
  • 2020-2024  (23)
  • 1
    Publication Date: 2024-03-19
    Description: Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land \nuse and climate have considerably reduced the scale of this system1 \n. Remote-sensing \nestimates to quantify carbon losses from global forests2\xe2\x80\x935 \n are characterized by \nconsiderable uncertainty and we lack a comprehensive ground-sourced evaluation to \nbenchmark these estimates. Here we combine several ground-sourced6 \n and satellitederived approaches2,7,8 \n to evaluate the scale of the global forest carbon potential \noutside agricultural and urban lands. Despite regional variation, the predictions \ndemonstrated remarkable consistency at a global scale, with only a 12% diference \nbetween the ground-sourced and satellite-derived estimates. At present, global forest \ncarbon storage is markedly under the natural potential, with a total defcit of 226\xe2\x80\x89Gt \n(model range\xe2\x80\x89=\xe2\x80\x89151\xe2\x80\x93363\xe2\x80\x89Gt) in areas with low human footprint. Most (61%, 139\xe2\x80\x89Gt\xe2\x80\x89C) \nof this potential is in areas with existing forests, in which ecosystem protection can \nallow forests to recover to maturity. The remaining 39% (87\xe2\x80\x89Gt\xe2\x80\x89C) of potential lies in \nregions in which forests have been removed or fragmented. Although forests cannot \nbe a substitute for emissions reductions, our results support the idea2,3,9 \n that the \nconservation, restoration and sustainable management of diverse forests ofer \nvaluable contributions to meeting global climate and biodiversity targets.
    Keywords: Multidisciplinary
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: The tropical forest carbon sink is known to be drought sensitive, but it is \nunclear which forests are the most vulnerable to extreme events. Forests with \nhotter and drier baseline conditions may be protected by prior adaptation, or \nmore vulnerable because they operate closer to physiological limits. Here we \nreport that forests in drier South American climates experienced the greatest \nimpacts of the 2015\xe2\x80\x932016 El Ni\xc3\xb1o, indicating greater vulnerability to extreme \ntemperatures and drought. The long-term, ground-measured tree-by-tree \nresponses of 123 forest plots across tropical South America show that the \nbiomass carbon sink ceased during the event with carbon balance becoming \nindistinguishable from zero (\xe2\x88\x920.02\xe2\x80\x89\xc2\xb1\xe2\x80\x890.37\xe2\x80\x89Mg\xe2\x80\x89C\xe2\x80\x89ha\xe2\x88\x921 per year). However, \nintact tropical South American forests overall were no more sensitive to the \nextreme 2015\xe2\x80\x932016 El Ni\xc3\xb1o than to previous less intense events, remaining a \nkey defence against climate change as long as they are protected.
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-10
    Description: The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-16
    Description: An author of the paper was omitted in the original version (Ted Conroy, University of Waikato, New Zealand). This has been corrected in the pdf and HTML versions of the paper, and the associated metadata.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Scientific Reports, Springer Science and Business Media LLC, 13(1), pp. 3562-, ISSN: 2045-2322
    Publication Date: 2023-03-09
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉The global degradation of coral reefs is steadily increasing with ongoing climate change. Yet coral larvae settlement, a key mechanism of coral population rejuvenation and recovery, is largely understudied. Here, we show how the lipophilic, settlement-inducing bacterial pigment cycloprodigiosin (CYPRO) is actively harvested and subsequently enriched along the ectoderm of larvae of the scleractinian coral 〈jats:italic〉Leptastrea purpura〈/jats:italic〉. A light-dependent reaction transforms the CYPRO molecules through photolytic decomposition and provides a constant supply of hydrogen peroxide (H〈jats:sub〉2〈/jats:sub〉O〈jats:sub〉2〈/jats:sub〉), leading to attachment on the substrate and metamorphosis into a coral recruit. Micromolar concentrations of H〈jats:sub〉2〈/jats:sub〉O〈jats:sub〉2〈/jats:sub〉 in seawater also resulted in rapid metamorphosis, but without prior larval attachment. We propose that the morphogen CYPRO is responsible for initiating attachment while simultaneously acting as a molecular generator for the comprehensive metamorphosis of pelagic larvae. Ultimately, our approach opens a novel mechanistic dimension to the study of chemical signaling in coral settlement and provides unprecedented insights into the role of infochemicals in cross-kingdom interactions.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-30
    Description: In contrast to the well-recognized permafrost carbon (C) feedback to climate change, the fate of permafrost nitrogen (N) after thaw is poorly understood. According to mounting evidence, part of the N liberated from permafrost may be released to the atmosphere as the strong greenhouse gas (GHG) nitrous oxide (N2O). Here, we report post-thaw N2O release from late Pleistocene permafrost deposits called Yedoma, which store a substantial part of permafrost C and N and are highly vulnerable to thaw. While freshly thawed, unvegetated Yedoma in disturbed areas emit little N2O, emissions increase within few years after stabilization, drying and revegetation with grasses to high rates (548 (133–6286) μg N m−2 day−1; median with (range)), exceeding by 1–2 orders of magnitude the typical rates from permafrost-affected soils. Using targeted metagenomics of key N cycling genes, we link the increase in in situ N2O emissions with structural changes of the microbial community responsible for N cycling. Our results highlight the importance of extra N availability from thawing Yedoma permafrost, causing a positive climate feedback from the Arctic in the form of N2O emissions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-22
    Description: Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Ecology & Evolution, Springer Nature, 7(7), pp. 994-1001, ISSN: 2397-334X
    Publication Date: 2023-09-21
    Description: The discrepancy between global loss and local constant species richness has led to debates over data quality, systematic biases in monitoring programmes and the adequacy of species richness to capture changes in biodiversity. We show that, more fundamentally, null expectations of stable richness can be wrong, despite independent yet equal colonization and extinction. We analysed fish and bird time series and found an overall richness increase. This increase reflects a systematic bias towards an earlier detection of colonizations than extinctions. To understand how much this bias influences richness trends, we simulated time series using a neutral model controlling for equilibrium richness and temporal autocorrelation (that is, no trend expected). These simulated time series showed significant changes in richness, highlighting the effect of temporal autocorrelation on the expected baseline for species richness changes. The finite nature of time series, the long persistence of declining populations and the potential strong dispersal limitation probably lead to richness changes when changing conditions promote compositional turnover. Temporal analyses of richness should incorporate this bias by considering appropriate neutral baselines for richness changes. Absence of richness trends over time, as previously reported, can actually reflect a negative deviation from the positive biodiversity trend expected by default.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-16
    Description: Microbial composition and diversity in marine sediments are shaped by environmental, biological, and anthropogenic processes operating at different scales. However, our understanding of benthic microbial biogeography remains limited. Here, we used 16S rDNA amplicon sequencing to characterize benthic microbiota in the North Sea from the top centimeter of 339 sediment samples. We utilized spatially explicit statistical models, to disentangle the effects of the different predictors, including bottom trawling intensity, a prevalent industrial fishing practice which heavily impacts benthic ecosystems. Fitted models demonstrate how the geographic interplay of different environmental and anthropogenic drivers shapes the diversity, structure and potential metabolism of benthic microbial communities. Sediment properties were the primary determinants, with diversity increasing with sediment permeability but also with mud content, highlighting different underlying processes. Additionally, diversity and structure varied with total organic matter content, temperature, bottom shear stress and bottom trawling. Changes in diversity associated with bottom trawling intensity were accompanied by shifts in predicted energy metabolism. Specifically, with increasing trawling intensity, we observed a transition toward more aerobic heterotrophic and less denitrifying predicted metabolism. Our findings provide first insights into benthic microbial biogeographic patterns on a large spatial scale and illustrate how anthropogenic activity such as bottom trawling may influence the distribution and abundances of microbes and potential metabolism at macroecological scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Nature Reviews Earth & Environment, Springer Science and Business Media LLC, ISSN: 2662-138X
    Publication Date: 2024-01-08
    Description: Krill habitats in the Southern Ocean are impacted by changing climate conditions, reduced sea ice and rising temperatures. These changes, in turn, affect krill occurrence, physiology and behaviour, which could have ecosystem impacts. In this Review, we examine climate change impacts on Antarctic krill and the potential implications for the Southern Ocean ecosystem. Since the 1970s, there have been apparent reductions in adult population density and the occurrence of very dense swarms in the northern Southwest Atlantic. These changes were associated with latitudinal and longitudinal rearrangement of population distribution — including a poleward contraction in the Southwest Atlantic — and were likely driven by ocean warming, sea-ice reductions and changes in the quality of larval habitats. As swarms are targeted by fishers and predators, this contraction could increase fishery–predator interactions, potentially exacerbating risk to already declining penguin populations and recovering whale populations. These risks require urgent mitigation measures to be developed. A circumpolar monitoring network using emerging technologies is needed to augment existing surveys and better record the shifts in krill distribution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...