ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (28)
  • Open Access-Papers  (28)
  • MDPI  (14)
  • Oxford University Press  (14)
  • 2020-2023  (28)
  • 1965-1969
  • 1
    Publication Date: 2021-12-02
    Description: The presence of volcanic clouds in the atmosphere affects air quality, the environment, climate, human health and aviation safety. The importance of the detection and retrieval of volcanic SO2 lies with risk mitigation as well as with the possibility of providing insights into the mechanisms that cause eruptions. Due to their intrinsic characteristics, satellite measurements have become an essential tool for volcanic monitoring. In recent years, several sensors, with different spectral, spatial and temporal resolutions, have been launched into orbit, significantly increasing the effectiveness of the estimation of the various parameters related to the state of volcanic activity. In this work, the SO2 total masses and fluxes were obtained from several satellite sounders—the geostationary (GEO) MSG-SEVIRI and the polar (LEO) Aqua/Terra-MODIS, NPP/NOAA20-VIIRS, Sentinel5p-TROPOMI, MetopA/MetopB-IASI and Aqua-AIRS—and compared to one another. As a test case, the Christmas 2018 Etna eruption was considered. The characteristics of the eruption (tropospheric with low ash content), the large amount of (simultaneously) available data and the different instrument types and SO2 columnar abundance retrieval strategies make this cross-comparison particularly relevant. Results show the higher sensitivity of TROPOMI and IASI and a general good agreement between the SO2 total masses and fluxes obtained from all the satellite instruments. The differences found are either related to inherent instrumental sensitivity or the assumed and/or calculated SO2 cloud height considered as input for the satellite retrievals. Results indicate also that, despite their low revisit time, the LEO sensors are able to provide information on SO2 flux over large time intervals. Finally, a complete error assessment on SO2 flux retrievals using SEVIRI data was realized by considering uncertainties in wind speed and SO2 abundance.
    Description: Published
    Description: 2225
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-24
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Page, H. N., Bahr, K. D., Cyronak, T., Jewett, E. B., Johnson, M. D., & McCoy, S. J. Responses of benthic calcifying algae to ocean acidification differ between laboratory and field settings. Ices Journal of Marine Science, 79(1), (2022): 1–11, https://doi.org/10.1093/icesjms/fsab232.
    Description: Accurately predicting the effects of ocean and coastal acidification on marine ecosystems requires understanding how responses scale from laboratory experiments to the natural world. Using benthic calcifying macroalgae as a model system, we performed a semi-quantitative synthesis to compare directional responses between laboratory experiments and field studies. Variability in ecological, spatial, and temporal scales across studies, and the disparity in the number of responses documented in laboratory and field settings, make direct comparisons difficult. Despite these differences, some responses, including community-level measurements, were consistent across laboratory and field studies. However, there were also mismatches in the directionality of many responses with more negative acidification impacts reported in laboratory experiments. Recommendations to improve our ability to scale responses include: (i) developing novel approaches to allow measurements of the same responses in laboratory and field settings, and (ii) researching understudied calcifying benthic macroalgal species and responses. Incorporating these guidelines into research programs will yield data more suitable for robust meta-analyses and will facilitate the development of ecosystem models that incorporate proper scaling of organismal responses to in situ acidification. This, in turn, will allow for more accurate predictions of future changes in ecosystem health and function in a rapidly changing natural climate.
    Description: We would like to thank the Ocean Carbon and Biogeochemistry Program for organizing the fourth U.S. Ocean Acidification Principal Investigators meeting, which is where this synthesis was conceived. HNP was a postdoctoral research fellow at Mote Marine Laboratory. MDJ is a postdoctoral scholar at Woods Hole Oceanographic Institution. SJM is a Norma J. Lang early career fellow of the Phycological Society of America.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vallecillo-Viejo, I. C., Liscovitch-Brauer, N., Diaz Quiroz, J. F., Montiel-Gonzalez, Maria F., Nemes, Sonya E., Rangan, K. J., Levinson, S. R., Eisenberg, E., & Rosenthal, J. J. C. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Research, (2020): gkaa172, doi: 10.1093/nar/gkaa172.
    Description: In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome’s blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (〉70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.
    Description: National Science Foundation (NSF) [IOS1557748 to J.R.]; United States–Israel Binational Science Foundation [BSF2013094 to J.R. and E.E.]; The Grass Foundation grant in support of the Doryteuthis pealeii Genome Project, and a gift by Mr. Edward Owens. Funding for open access charge: United States–Israel Binational Science Foundation [BSF2013094].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kiang, N. Y., Swingley, W. D., Gautam, D., Broddrick, J. T., Repeta, D. J., Stolz, J. F., Blankenship, R. E., Wolf, B. M., Detweiler, A. M., Miller, K. A., Schladweiler, J. J., Lindeman, R., & Parenteau, M. N. Discovery of chlorophyll d: isolation and characterization of a far-red cyanobacterium from the original site of manning and strain (1943) at Moss Beach, California. Microorganisms, 10(4), (2022): 819, https://doi.org/10.3390/microorganisms10040819.
    Description: We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.
    Description: N.Y.K., M.N.P. and R.E.B. were supported by the NASA Virtual Planetary Laboratory team (VPL), which was funded under NASA Astrobiology Institute Cooperative Agreement Number NNA13AA93A, and Grant Number 80NSSC18K0829. This work also benefited from participation in the NASA Nexus for Exoplanet Systems Science (NExSS) research coordination network (RCN). W.D.S, N.Y.K. and M.N.P. were also supported by a NASA Exobiology grant No. 80NSSC19K0478. J.TB. was supported by the NASA Postdoctoral Program (NPP) award number NPP168014S. N.Y.K. received training support from the NASA Goddard Space Flight Center Training Office to take the Microbial Diversity course at the Marine Biological Laboratory, Woods Hole, MA, USA.
    Keywords: Chlorophyll d ; Acaryochloris ; Moss Beach ; Cyanobacteria ; Far-red photosynthesis ; Photosynthetic pigments ; Absorbance spectra ; Genome sequence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aoki, L. R., Brisbin, M. M., Hounshell, A. G., Kincaid, D. W., Larson, E., Sansom, B. J., Shogren, A. J., Smith, R. S., & Sullivan-Stack, J. Preparing aquatic research for an extreme future: call for improved definitions and responsive, multidisciplinary approaches. Bioscience, 72(6), (2022): 508-520, https://doi.org/10.1093/biosci/biac020.
    Description: Extreme events have increased in frequency globally, with a simultaneous surge in scientific interest about their ecological responses, particularly in sensitive freshwater, coastal, and marine ecosystems. We synthesized observational studies of extreme events in these aquatic ecosystems, finding that many studies do not use consistent definitions of extreme events. Furthermore, many studies do not capture ecological responses across the full spatial scale of the events. In contrast, sampling often extends across longer temporal scales than the event itself, highlighting the usefulness of long-term monitoring. Many ecological studies of extreme events measure biological responses but exclude chemical and physical responses, underscoring the need for integrative and multidisciplinary approaches. To advance extreme event research, we suggest prioritizing pre- and postevent data collection, including leveraging long-term monitoring; making intersite and cross-scale comparisons; adopting novel empirical and statistical approaches; and developing funding streams to support flexible and responsive data collection.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hirschberger, C., Sleight, V. A., Criswell, K. E., Clark, S. J., & Gillis, J. A. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw. Molecular Biology and Evolution, (2021): msab123, https://doi.org/10.1093/molbev/msab123
    Description: The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral patterning mechanisms within the developing mandibular, hyoid and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralising BMP and endothelin signalling pathways and their effectors, the joint markers nkx3.2 and gdf5 and pro-chondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, while differences in notch signalling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the dorsoventral axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.
    Description: This work was supported by a Biotechnology and Biological Sciences Research Council Doctoral Training Partnership studentship to CH, by a Wolfson College Junior Research Fellowship and MBL Whitman Early Career Fellowship to VAS, and by a Royal Society University Research Fellowship (UF130182 and URF\R\191007), Royal Society Research Grant (RG140377) and University of Cambridge Sir Isaac Newton Trust Grant (14.23z) to JAG.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suca, J. J., Deroba, J. J., Richardson, D. E., Ji, R., & Llopiz, J. K. Environmental drivers and trends in forage fish occupancy of the Northeast US shelf. Ices Journal of Marine Science, 78(10), (2021): 3687–3708, https://doi.org/10.1093/icesjms/fsab214.
    Description: The Northeast US shelf ecosystem is undergoing unprecedented changes due to long-term warming trends and shifts in regional hydrography leading to changes in community composition. However, it remains uncertain how shelf occupancy by the region's dominant, offshore small pelagic fishes, also known as forage fishes, has changed throughout the late 20th and early 21st centuries. Here, we use species distribution models to estimate the change in shelf occupancy, mean weighted latitude, and mean weighted depth of six forage fishes on the Northeast US shelf, and whether those trends were linked to coincident hydrographic conditions. Our results suggest that observed shelf occupancy is increasing or unchanging for most species in both spring and fall, linked both to gear shifts and increasing bottom temperature and salinity. Exceptions include decreases to observed shelf occupancy by sand lance and decreases to Atlantic herring's inferred habitat suitability in the fall. Our work shows that changes in shelf occupancy and inferred habitat suitability have varying coherence, indicating complex mechanisms behind observed shelf occupancy for many species. Future work and management can use these results to better isolate the aspects of forage fish life histories that are important for determining their occupancy of the Northeast US shelf.
    Description: Funding came from the National Oceanic and Atmospheric Administration Woods Hole Sea Grant Program (NA18OAR4170104, Project number R/O-57; RJ and JKL) and a National Science Foundation Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE1655686; RJ and JKL). JJS was funded by the National Science Foundation Graduate Research Fellowship program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gentemann, C. L., Clayson, C. A., Brown, S., Lee, T., Parfitt, R., Farrar, J. T., Bourassa, M., Minnett, P. J., Seo, H., Gille, S. T., & Zlotnicki, V. FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sensing, 12(11), (2020): 1796, doi:10.3390/rs12111796.
    Description: Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
    Description: C.L.G. was funded by NASA grant 80NSSC18K0837. C.A.C. was funded by NASA grants 80NSSC18K0778 and 80NSSC20K0662. J.T.F. was funded by NASA grants NNX17AH54G, NNX16AH76G, and 80NSSC19K1256. S.T.G. was funded by the National Science Foundation grant PLR-1425989 and by the NASA Ocean Vector Winds Science Team grant 80NSSC19K0059. M.B. was funded in part by the Ocean Observing and Monitoring Division, Climate Program Office (FundRef number 100007298), National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and by the NASA Ocean Vector Winds Science Team grant through NASA/JPL. H.S. was funded by National Oceanic and Atmospheric Administration (NOAA) grant NA19OAR4310376 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at Woods Hole Oceanographic Institution.
    Keywords: Air-sea interactions ; Mesoscale ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-03
    Description: Rocky reefs provide complex structures in the otherwise largely sand-dominated coastal North Sea. Therefore, these reefs are highly important natural habitats for the functioning of coastal ecosystems, as they provide shelter, refuge and nursery grounds for various mobile and sessile species. In the North Sea, the spatial distribution of these habitats has been intensively investigated over recent years. However, these studies generally provide static accounts of the current state of these reef systems, but limited data exist on the temporal variations in sediment dynamics at and around natural rocky reefs. In this study, we provide observations from a multiannual time series of hydroacoustic seafloor surveys conducted at an isolated rocky reef in the North Sea. We use multibeam bathymetry and side-scan sonar backscatter data in combination with video observations, sediment sampling, and sub-bottom profiler data to assess the long-term variations of the rocky reef system. The reef is located in water depths between 11 and 17 m with an areal extent of ~0.5 km2 and is surrounded by mobile sands. The topography of the rocky reef appears to create a distinct hydrodynamic system that permits mobile sands to settle or move into bathymetrical deeper parts of the reef. Our results suggest a very dynamic system surrounding the reef with large scale scouring, sediment reworking and transport, while the shallower central part of the reef remains stable over time. We demonstrate the importance of hydrodynamics and current scouring around reefs for the local variability in seafloor properties over time. These small-scale dynamics are likewise reflected in the spatial distribution of sessile species, which are less abundant in proximity to mobile sands. The hydroacoustic mapping and monitoring of seafloor dynamics at higher spatial and temporal resolutions presents an important future direction in the study of valuable coastal habitats.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carroll, E. L., Ott, P. H., McMillan, L. F., Galletti Vernazzani, B., Neveceralova, P., Vermeulen, E., Gaggiotti, O. E., Andriolo, A., Baker, C. S., Bamford, C., Best, P., Cabrera, E., Calderan, S., Chirife, A., Fewster, R. M., Flores, P. A. C., Frasier, T., Freitas, T. R. O., Groch, K., Hulva, P., Kennedy, A., Leaper, R., Leslie, M. S., Moore, M., Oliveira, L., Seger, J., Stepien, E. N., Valenzuela, L. O., Zerbini, A., & Jackson, J. A. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground. Journal of Heredity, 111(3), (2020): 263-276, doi:10.1093/jhered/esaa010.
    Description: As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile–Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile–Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile–Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile–Peru.
    Description: This work was supported by the EU BEST 2.0 medium grant 1594 and UK DARWIN PLUS grant 057 and additional funding from the World Wildlife Fund GB107301. The collection of the Chile–Peru sample was supported by the Global Greengrants Fund and the Pacific Whale Foundation. The collection of the Brazilian samples was supported through grants by the Brazilian National Research Council to Paulo H. Ott (CNPq proc. n° 144064/98-7) and Paulo A.C. Flores (CNPq proc. n° 146609/1999-9) and with support from the World Wildlife Fund (WWF-Brazil). The collection of the South African samples was supported by the Global Greengrants Fund, the Pacific Whale Foundation and Charles University Grant Agency (1140217). E.L.C. was partially supported by a Rutherford Discovery Fellowship from the Royal Society of New Zealand. This study forms part of the Ecosystems component of the British Antarctic Survey Polar Sciences for Planet Earth Programme, funded by the Natural Environment Research Council.
    Keywords: population structure ; connectivity ; migration ; gene flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...