ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (52)
  • Open Access-Papers  (52)
  • Elsevier  (52)
  • 2020-2023  (51)
  • 1965-1969  (1)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jacox, M. G., Alexander, M. A., Siedlecki, S., Chen, K., Kwon, Y., Brodie, S., Ortiz, I., Tommasi, D., Widlansky, M. J., Barrie, D., Capotondi, A., Cheng, W., Di Lorenzo, E., Edwards, C., Fiechter, J., Fratantoni, P., Hazen, E. L., Hermann, A. J., Kumar, A., Miller, A. J., Pirhalla, D., Buil, M. P., Ray, S., Sheridan, S. C., Subramanian, A., Thompson, P., Thorne, L., Annamalai, H., Aydin, K., Bograd, S. J., Griffis, R. B., Kearney, K., Kim, H., Mariotti, A., Merrifield, M., & Rykaczewski, R. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Progress in Oceanography, 183, (2020): 102307, doi:10.1016/j.pocean.2020.102307.
    Description: Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting potential for forecasts to aid in the management of living marine resources and coastal communities. However, the mechanisms underlying forecast skill in marine ecosystems are often poorly understood, and many forecasts, especially for biological variables, rely on empirical statistical relationships developed from historical observations. Here, we review statistical and dynamical marine ecosystem forecasting methods and highlight examples of their application along U.S. coastlines for seasonal-to-interannual (1–24 month) prediction of properties ranging from coastal sea level to marine top predator distributions. We then describe known mechanisms governing marine ecosystem predictability and how they have been used in forecasts to date. These mechanisms include physical atmospheric and oceanic processes, biogeochemical and ecological responses to physical forcing, and intrinsic characteristics of species themselves. In reviewing the state of the knowledge on forecasting techniques and mechanisms underlying marine ecosystem predictability, we aim to facilitate forecast development and uptake by (i) identifying methods and processes that can be exploited for development of skillful regional forecasts, (ii) informing priorities for forecast development and verification, and (iii) improving understanding of conditional forecast skill (i.e., a priori knowledge of whether a forecast is likely to be skillful). While we focus primarily on coastal marine ecosystems surrounding North America (and the U.S. in particular), we detail forecast methods, physical and biological mechanisms, and priority developments that are globally relevant.
    Description: This study was supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) program through grants NA17OAR4310108, NA17OAR4310112, NA17OAR4310111, NA17OAR4310110, NA17OAR4310109, NA17OAR4310104, NA17OAR4310106, and NA17OAR4310113. This paper is a product of the NOAA/MAPP Marine Prediction Task Force.
    Keywords: Prediction ; Predictability ; Forecast ; Ecological forecast ; Mechanism ; Seasonal ; Interannual ; Large marine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, (2020): 103339, doi:10.1016/j.dsr.2020.103339.
    Description: During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical “steady-state” (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic “steady-state” model shows increases from 0.5 ± 8.5 dpm m−2 d−1 to 68.2 ± 4.2 dpm m−2 d−1 over the ~one-month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (〉0.8 μm) and particulate 210Po (〉0.4 μm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the “steady state” 210Po fluxes yields POC export from the upper 150 m of 8.2 ± 1.5 mmol C m− 2 d−1 on 20 May and 6.0 ± 1.6 mmol C m−2 d−1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C m−2 d−1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol m−2 d−1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol m−2 d−1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered.
    Description: We are grateful to T. Hammar and A. Fleer (WHOI) for assistance at sea and in the laboratory. This work was supported originally by National Science Foundation (United States) grant OCE-8819544 to JKC and more recently by OCE-1736591. We thank Stephen Thurston (American Museum of Natural History) for graphics assistance Robert Aller, Steven Beaupre, and two anonymous reviewers for helpful comments.
    Keywords: Polonium-210 ; Lead-210 ; 210Po ; 210Pb ; North Atlantic ; Spring bloom ; POC flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pirotta, E., Thomas, L., Costa, D., Hall, A., Harris, C., Harwood, J., Kraus, S., Miller, P., Moore, M., Photopoulou, T., Rolland, R., Schwacke, L., Simmons, S., Southall, B., & Tyack, P. Understanding the combined effects of multiple stressors: a new perspective on a longstanding challenge. Science of The Total Environment, 821, (2022): 153322, https://doi.org/10.1016/j.scitotenv.2022.153322.
    Description: Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.
    Description: This work was supported by the Office of Naval Research [grant numbers N000142012697, N000142112096]; and the Strategic Environmental Research and Development Program [grant numbers RC20-1097, RC20-7188, RC21-3091].
    Keywords: Adaptive management ; Climate change ; Combined effects ; Mechanistic modelling ; Multiple stressors ; Population consequences
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cuthbert, R. N., Diagne, C., Hudgins, E. J., Turbelin, A., Ahmed, D. A., Albert, C., Bodey, T. W., Briski, E., Essl, F., Haubrock, P. J., Gozlan, R. E., Kirichenko, N., Kourantidou, M., Kramer, A. M., & Courchamp, F. Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment, 819, (2022): 153404, https://doi.org/10.1016/j.scitotenv.2022.153404.
    Description: The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs — 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1–2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management — particularly pre-invasion — and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
    Description: The authors thank the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project and the work on InvaCost database development. The present work was conducted in the frame of InvaCost workshop carried in November 2019 (Paris, France) and funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC was funded through a Leverhulme Early Career Fellowship (ECF-2021-001) from the Leverhulme Trust and a Humboldt Postdoctoral Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed funds (187092 & 234597). CA was funded by the French National Centre for Scientific Research (CNRS). TWB acknowledges funding from the European Union's Horizon 2020 research and innovation programme Marie Skłodowska-Curie fellowship (Grant No. 747120). FE was funded through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisation Austrian Science Foundation FWF (grant I 4011-B32). NK is funded by the basic project of Sukachev Institute of Forest SB RAS, Russia (Project No. 0287-2021-0011; data mining) and the Russian Science Foundation (project No. 21-16-00050; data analysis).
    Keywords: Biosecurity ; Delayed control and eradication ; Global trends ; InvaCost ; Invasive alien species ; Socio-economic impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haentjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., & Zona, D. Representativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301, (2021): 108350, https://doi.org/10.1016/j.agrformet.2021.108350.
    Description: Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
    Description: We thank the AmeriFlux site teams for sharing their data and metadata with the network. Funding for these flux sites is acknowledged in the site data DOI, shown in Table S1. This analysis was supported in part by funding provided to the AmeriFlux Management Project by the U.S. Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231. All footprint climatologies, site-level representativeness indices, and monthly EVI and sensor location biases can be accessed via the Zenodo Data Repository (Datasets S1–S6, http://doi.org/10.5281/zenodo.4015350).
    Keywords: Flux footprint ; Spatial representativeness ; Landsat EVI ; Land cover ; Sensor location bias ; Model-data benchmarking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-16
    Description: On September 6, 2017, the solar active region AR 2673 emitted two solar flares: the first at 08:57 UT (X2.2) and the second at 11:53 UT (X9.3); both were powerful enough to black-out high and low frequency radio waves (where UT is universal time). The X9.3 was the strongest solar flare event in the past decade. In this study, we took the advantage of these two extreme flare events to investigate corresponding effects on the ionosphere using multi-instrument observations from magnetometers, Global Positioning System – Total Electron content (GPS-TEC) receivers, ionosondes and Swarm satellites over a large geographical extent covering South American, African and European sectors. During the X2.2 flare, European and African sectors were sunlit and during X9.3 European, African, and South American sectors were sunlit and exposed to the solar flare radiation. During the X2.2 flare, there was an ionosonde blackout for a duration of about 45 min, while during the X9.3 flare this blackout lasted for 1 h and 30 min. The blackout are seen over a large global extent which demonstrates the severity of solar flare events in disrupting the radio communication. The horizontal component of Earth’s geomagnetic field has shown ripples and enhancements during these flare events. The ionospheric Vertical Total Electron Content (VTEC) showed a positive phase along with an intensification of the Equatorial Ionization Anomaly (EIA) over the South American and African sectors. The dynamical and physical processes associated with the TEC and EIA variabilities due to solar flare are discussed.
    Description: Published
    Description: 1775-1791
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Elling, F. J., Hemingway, J. D., Kharbush, J. J., Becker, K. W., Polik, C. A., & Pearson, A. Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: insights from Mediterranean sapropel events. Earth and Planetary Science Letters, 571, (2021): 117110, https://doi.org/10.1016/j.epsl.2021.117110.
    Description: Elevated organic matter (OM) export flux promotes marine anoxia, thus increasing carbon sequestration efficiency and decreasing atmospheric carbon dioxide levels. However, the mechanisms that trigger and sustain anoxic events—particularly those associated with nutrient-poor, oligotrophic surface waters—remain poorly constrained. Mediterranean Sea sapropels are well-preserved sediments deposited during episodic anoxic events throughout the Plio-Pleistocene; as such, they may provide unique insight into the biogeochemical and ecological drivers of—and responses to—marine anoxia. Using biomarker distributions, we demonstrate that anaerobic ammonium oxidizing (anammox) bacteria and diazotrophic endosymbionts of mat- and/or raft-forming diatoms were both abundant during sapropel events, particularly in the Ionian and Libyan seas. In these sapropels, the carbon isotope compositions of anammox biomarkers directly capture progressive 13C-depletion in deep-water dissolved inorganic carbon, indicating sustained carbon sequestration. To explain these observations, we propose a reinforcing feedback whereby initial nutrient and/or circulation perturbations promote fixed nitrogen loss via intensified anammox and heterotrophic denitrification, which in turn favors proliferation of rapidly sinking diatom-diazotroph symbiotic consortia, increases OM burial flux, and sustains anoxia. This mechanism resolves the long-standing conundrum that small and buoyant diazotrophs are apparently associated with high OM export during periods of marine anoxia and oligotrophy.
    Description: This work was funded through the Gordon and Betty Moore Foundation and US National Science Foundation grants 1843285, 1702262 and 1349126 (to A.P.). Additional financial support was provided by the Postdoctoral Program at the Woods Hole Oceanographic Institution and U.S. Geological Survey (K.W.B.).
    Keywords: Nammox ; Anoxia ; Compound-specific, δ13, C ; Diatom-diazotroph symbioses ; N2-fixation ; Mediterranean sapropels
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molines, A. T., Lemière, J., Gazzola, M., Steinmark, I. E., Edrington, C. H., Hsu, C.-T., Real-Calderon, P., Suhling, K., Goshima, G., Holt, L. J., Thery, M., Brouhard, G. J., & Chang, F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Developmental Cell, 57(4), (2022): 466-479.e6, https://doi.org/10.1016/j.devcel.2022.02.001.
    Description: The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
    Description: This work was supported by grants to F.C. (NIH GM115185, NIH GM056836, NIH GM146438), to L.J.H. (American Cancer Society RSG-19-073-01-TBE, Pershing Square Sohn Cancer Award, Chan Zuckerberg Initiative, NIH GM132447 and NIH CA240765), to G.G. (JSPS KAKENHI 17H06471 and 18KK0202), to K.S. (UK’s Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/R004803/1) and to M.T. (ERC Consolidator Grant 771599). I.E.S. was supported by King’s College London through a LIDo (London Interdisciplinary Doctoral programme) iCASE studentship.
    Keywords: Cytoskeleton dynamics ; Microtubules ; Cytoplasm ; Crowding ; Viscosity ; Diffusion ; Density ; Rheology ; Mitosis ; Fission yeast Schizosaccharomyces pombe
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marty, B., Almayrac, M., Barry, P. H., Bekaert, D., V., Broadley, M. W., Byrne, D. J., Ballentine, C. J., & Caracausi, A. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 551, (2020): 116574, doi:10.1016/j.epsl.2020.116574.
    Description: The terrestrial carbon to nitrogen ratio is a key geochemical parameter that can provide information on the nature of Earth's precursors, accretion/differentiation processes of our planet, as well as on the volatile budget of Earth. In principle, this ratio can be determined from the analysis of volatile elements trapped in mantle-derived rocks like mid-ocean ridge basalts (MORB), corrected for fractional degassing during eruption. However, this correction is critical and previous attempts have adopted different approaches which led to contrasting C/N estimates for the bulk silicate Earth (BSE) (Marty and Zimmermann, 1999; Bergin et al., 2015). Here we consider the analysis of CO2-rich gases worldwide for which a mantle origin has been determined using noble gas isotopes in order to evaluate the C/N ratio of the mantle source regions. These gases experienced little fractionation due to degassing, as indicated by radiogenic 4He / 40Ar* values (where 4He and 40Ar* are produced by the decay of U+Th, and 40K isotopes, respectively) close to the mantle production/accumulation values. The C/N and C/3 He ratios of gases investigated here are within the range of values previously observed in oceanic basalts. They point to an elevated mantle C/N ratio (∼350-470, molar) higher than those of potential cosmochemical accretionary endmembers. For example, the BSE C/N and 36 Ar / N ratios (160-220 and 75 x 10-7, respectively) are higher than those of CM-CI chondrites but within the range of CV-CO groups. This similarity suggests that the Earth accreted from evolved planetary precursors depleted in volatile and moderately volatile elements. Hence the high C / N composition of the BSE may be an inherited feature rather than the result of terrestrial differentiation. The C / N and 36 Ar / N ratios of the surface (atmosphere plus crust) and of the mantle cannot be easily linked to any known chondritic composition. However, these compositions are consistent with early sequestration of carbon into the mantle (but not N and noble gases), permitting the establishment of clement temperatures at the surface of our planet.
    Description: M.A, D.V.B, M.W.B, D.J.B and B.M were supported by the European Research Council (PHOTONIS project, grant agreement No. 695618 to B.M.). Samples were collected as part of Study # YELL-08056 - Xenon anomalies in the Yellowstone Hotspot. We would like to thank Annie Carlson and all of the rangers at the Yellowstone National Park for providing invaluable advice and help when collecting the samples. This work was partially supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B as well as NSF award 2015789 to P.H.B.. Sampling at Mt. Etna and gas analysis was supported by Instituto Nazionale di Geofisica e Vulcanologia Palermo. Fruitful discussions with Marc Hirschmann helped us to shape the ideas presented in this work. We acknowledge detailed and insightful reviews by Sami Mikhail and an anonymous reviewer, and efficient editing by Frederic Moynier. This is CRPG contribution 2741.
    Keywords: Carbon ; Nitrogen ; Earth ; Mantle ; Gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cuthbert, R. N., Pattison, Z., Taylor, N. G., Verbrugge, L., Diagne, C., Ahmed, D. A., Leroy, B., Angulo, E., Briski, E., Capinha, C., Catford, J. A., Dalu, T., Essl, F., Gozlan, R. E., Haubrock, P. J., Kourantidou, M., Kramer, A. M., Renault, D., Wasserman, R. J., & Courchamp, F. Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, (2021): 145238, https://doi.org/10.1016/j.scitotenv.2021.145238.
    Description: Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages.
    Description: The authors acknowledge the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project that allowed the construction of the InvaCost database. The present work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenarios project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC is funded through a Humboldt Research Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed fund (187092). CD was funded by the BiodivERsA-Belmont Forum Project AlienScenarios (BMBF/PT DLR 01LC1807C). EA was funded by the AXA Research Fund Chair of Invasion Biology of University Paris Saclay. CC was supported by Portuguese National Funds through Fundação para a Ciência e a Tecnologia (CEECIND/02037/2017; UIDB/00295/2020 and UIDP/00295/2020). TD acknowledges funding from National Research Foundation (NRF_ZA) (Grant Number: 117700). FE appreciates funding by the Austrian Science Foundation (FWF project no I 4011-B32). AMK was supported by the NSF Macrosystems Biology program under grant 1834548. DR thanks InEE-CNRS who supports the French national network Biological Invasions (Groupement de Recherche InvaBio, 2014–2022).
    Keywords: Brackish ; Freshwater ; Habitat biases ; InvaCost ; Marine ; Monetary impact
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...