ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (2)
  • Artikel (Open Access)  (2)
  • Caribbean
  • Coral reefs
  • new species
  • American Geophysical Union  (1)
  • CORDIO-SAREC, Stockholm University  (1)
  • 2020-2023  (1)
  • 2010-2014
  • 2000-2004  (1)
  • 1
    facet.materialart.
    Unbekannt
    CORDIO-SAREC, Stockholm University | Stockholm, Sweden
    Publikationsdatum: 2021-05-19
    Beschreibung: Research Groups : Kenya Marine and Fisheries Research Institute (KMFRI), Mombasa, Kenya
    Beschreibung: In May 1999, two sites were selected within the Mombasa Marine Park and Reserve for the study of macroalgal succession due to bleaching. One of the sites was Starfish, which lies within the Mombasa Marine Park and is protected from fishing and the other site was Ras Iwatine, which lies in the Reserve area and is Subjected to fishing activities. The study revealed that the Starfish site had a significantly higher hard coral cover, which did not change over the study period. A comparison of the density of macroalgae revealed that a higher proportion of the substrate in Ras Iwatine was dominated by macroalgae. Settlement tiles, used to study algal recruitment, indicated that the succession process in the Starfish site passes through more stages compared to the Ras Iwatine site. This succession process suggested the influence of grazers in Starfish and their importance in maintaining a lower cover of macroalgae in this site.
    Beschreibung: Published
    Beschreibung: Algal succession, Macro algae, Coral bleaching, Marine protected areas
    Schlagwort(e): Algal blooms ; Coral reefs ; Ecosystems
    Repository-Name: AquaDocs
    Materialart: Report Section , Non-Refereed
    Format: 0 bytes
    Format: application/pdf
    Format: pp.61-69
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.
    Beschreibung: Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Beschreibung: Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to Rappé. The Hawaii Institute of Marine Biology (particularly the Rappé Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.
    Beschreibung: 2020-02-22
    Schlagwort(e): Coral reefs ; Ocean acidification ; Climate change ; Heterotrophy
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...