ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • Open Access-Papers  (10)
  • Caribbean  (6)
  • Coral reef  (4)
  • Coral reefs
  • new species
  • 2020-2023  (10)
  • 2010-2014
  • 2000-2004
  • 2021  (10)
  • 1
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Density of juvenile corals on reef surfaces
    Description: These data are presented in Edmunds (in press) Figure 2 and refer to juvenile corals (≤ 4 cm diam) found on natural reef substrata in St. John, US Virgin Islands from 1994 to 2020. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/854417
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-2019992
    Keywords: Scleractinia ; Juvenile ; Coral ; Reef ; Caribbean
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Survival of juvenile corals
    Description: These data are presented in Edmunds (in press) Fig. S2 in the supplementary materials and describe the annual mortality of tagged juvenile corals at six sites. Mortality (number of corals dead at the end of the period) is calculated as a percentage of the corals tagged at the start of the period in St. John, US Virgin Islands between 1996 and 2020. These data support Fig. S2 in the supplementary materials and describe annual mortality of tagged juvemnile corals at six sites. Mortality (number of corals dead at the end of the period) is caculated as a percentage of the corals tagged at the start of the period For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/854455
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-2019992
    Keywords: Scleractinia ; Juvenile ; Coral ; Survivorship ; Caribbean
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Juvenile Porites along transects over multiple years
    Description: These data are presented in Edmunds (in press) Fig. S1 in the supplementary materials and describe the number of juvenile corals (colonies ≤ 4 cm diameter) along the fixed 40 m transect lines at two sites in St. John, US Virgin Islands between 1994 and 2020. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/854447
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-2019992
    Keywords: Scleractinia ; Juvenile ; Porites ; Reef ; Caribbean
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Density of recruits on tiles
    Description: These data are presented in Figure 1 of Edmunds (in press) and are central to the goals of the paper, and refer to coral recruits found on settlement tiles (15 x 15 x 1 cm) in St. John, US Virgin Islands between 2007 and 2020. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/854321
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-2019992
    Keywords: Scleractinia ; Corals ; Recruit ; Reef ; Caribbean
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Densities of small corals in Diadema halos and temporal stability of D. antillarum clusters
    Description: Densities of small corals in Diadema halos and temporal stability of Diadema antillarum clusters. These data describe the individual small corals found in each quadrat at Yawzi Point and Cabritte Horn, St. John, US Virgin Islands in 2019 and 2020. These data were published in Stockton & Edmunds (2021). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/850372
    Description: NSF Division of Environmental Biology (NSF DEB) DEB-1350146, NSF Division of Ocean Sciences (NSF OCE) OCE-1756678
    Keywords: Peyssonnelia ; Ramicrusta ; Diadema ; Coral reef ; Virgin Islands
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(12), (2020): e2020JC016543, https://doi.org/10.1029/2020JC016543.
    Description: On coral reefs, flow determines residence time of water influencing physical and chemical environments and creating observable microclimates within the reef structure. Understanding the physical mechanisms driving environmental variability on shallow reefs, which distinguishes them from the open ocean, is important for understanding what contributes to thermal resilience of coral communities and predicting their response to future anomalies. In June 2014, a field experiment conducted at Dongsha Atoll in the northern South China Sea investigated the physical forces that drive flow over a broad shallow reef flat. Instrumentation included current and pressure sensors and a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 3‐km cross‐reef section from the lagoon to reef crest. Spectral analysis shows that while diurnal variability was significant across the reef flat—a result expected from daily solar heating—temperature also varied at higher frequencies near the reef crest. These spatially variable temperature regimes, or thermal microclimates, are influenced by circulation on the wide reef flat, with spatially and temporally variable contributions from tides, wind, and waves. Through particle tracking simulations, we find the residence time of water is shorter near the reef crest (3.6 h) than near the lagoon (8.6 h). Tidal variability in flow direction on the reef flat leads to patterns in residence time that are different than what would be predicted from unidirectional flow. Circulation on the reef also determines the source (originating from offshore vs. the lagoon) of the water present on the reef flat.
    Description: We thank S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs), funded by the National Science Foundation (EAR awards 1440596 and 1440506), for timely and effective provision of experimental design support, logistical support and equipment for the project. Support for S. Lentz is from NSF Grant No. OCE‐1558343. Support for A. Cohen from NSF Grant No. 1220529, by the Academia Sinica (Taiwan) through a thematic project grant to G. Wong and A. Cohen. Support for E. Reid and K. Davis is from National Science Foundation (NSF) Grant No. OCE‐1753317, and support to E. Reid from the Environmental Engineering Henry Samueli Endowed Fellowship and the UCI Oceans Graduate Fellowship.
    Description: 2021-05-23
    Keywords: Coral reef ; Distributed temperature sensing ; Temperature variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Becker, C. C., Weber, L., Suca, J. J., Llopiz, J. K., Mooney, T. A., & Apprill, A. Microbial and nutrient dynamics in mangrove, reef, and seagrass waters over tidal and diurnal time scales. Aquatic Microbial Ecology, 85, (2020): 101-119, https://doi.org/10.3354/ame01944.
    Description: In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial (Bacteria and Archaea) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes.
    Description: This research was supported by NSF awards OCE-1536782 to T.A.M., J.K.L., and A.A. and OCE-1736288 to A.A., NOAA Cooperative Institutes award NA19O AR 4320074 to A.A. and E. Kujawinski and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research to A.A.
    Keywords: Tide ; Picoplankton ; Mangrove ; Coral reef ; Seagrass ; Time series ; 16S rRNA gene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Apprill, A., Holm, H., Santoro, A. E., Becker, C., Neave, M., Hughen, K., Richards Dona, A., Aeby, G., Work, T., Weber, L., & McNally, S. Microbial ecology of coral-dominated reefs in the Federated States of Micronesia. Aquatic Microbial Ecology, 86, (2021): 115–136, https://doi.org/10.3354/ame01961.
    Description: Microorganisms are central to the functioning of coral reef ecosystems, but their dynamics are unstudied on most reefs. We examined the microbial ecology of shallow reefs within the Federated States of Micronesia. We surveyed 20 reefs surrounding 7 islands and atolls (Yap, Woleai, Olimarao, Kosrae, Kapingamarangi, Nukuoro, and Pohnpei), spanning 875053 km2. On the reefs, we found consistently higher coral coverage (mean ± SD = 36.9 ± 22.2%; max 77%) compared to macroalgae coverage (15.2 ± 15.5%; max 58%), and low abundances of fish. Reef waters had low inorganic nutrient concentrations and were dominated by Synechococcus, Prochlorococcus, and SAR11 bacteria. The richness of bacterial and archaeal communities was significantly related to interactions between island/atoll and depth. High coral coverage on reefs was linked to higher relative abundances of Flavobacteriaceae, Leisingera, Owenweeksia, Vibrio, and the OM27 clade, as well as other heterotrophic bacterial groups, consistent with communities residing in waters near corals and within coral mucus. Microbial community structure at reef depth was significantly correlated with geographic distance, suggesting that island biogeography influences reef microbial communities. Reefs at Kosrae Island, which hosted the highest coral abundance and diversity, were unique compared to other locations; seawater from Kosrae reefs had the lowest organic carbon (59.8-67.9 µM), highest organic nitrogen (4.5-5.3 µM), and harbored consistent microbial communities (〉85% similar), which were dominated by heterotrophic cells. This study suggests that the reef-water microbial ecology on Micronesian reefs is influenced by the density and diversity of corals as well as other biogeographical features.
    Description: Samples were collected under Federated States of Micronesia collection permits FM12-11-03S and FM12-11-05S. This project was supported by funding to A.A.: Woods Hole Oceanographic Institution Access to the Sea, Dalio Family Foundation, Andrew W. Mellon Foundation Endowed Fund for Innovative Research, and National Science Foundation awards OCE- 1233612 and OCE-1736288. A.E.S. was supported by startup funds from the University of Maryland Center for Environmental Sciences. K.H. obtained funding from WHOI Access to the Sea and the Dalio Explore Foundation that supported this cruise.
    Keywords: Coral reef ; Microbiology ; Micronesia ; Oligotrophic ; Cyanobacteria ; SSU rRNA gene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meiling, S. S., Muller, E. M., Lasseigne, D., Rossin, A., Veglia, A. J., MacKnight, N., Dimos, B., Huntley, N., Correa, A. M. S., Smith, T. B., Holstein, D. M., Mydlarz, L. D., Apprill, A., & Brandt, M. E. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Frontiers in Marine Science, 8, (2021): 670829, https://doi.org/10.3389/fmars.2021.670829.
    Description: Stony coral tissue loss disease (SCTLD) was initially documented in Florida in 2014 and outbreaks with similar characteristics have since appeared in disparate areas throughout the northern Caribbean, causing significant declines in coral communities. SCTLD is characterized by focal or multifocal lesions of denuded skeleton caused by rapid tissue loss and affects at least 22 reef-building species of Caribbean corals. A tissue-loss disease consistent with the case definition of SCTLD was first observed in the U.S. Virgin Islands (USVI) in January of 2019 off the south shore of St. Thomas at Flat Cay. The objective of the present study was to characterize species susceptibility to the disease present in St. Thomas in a controlled laboratory transmission experiment. Fragments of six species of corals (Colpophyllia natans, Montastraea cavernosa, Orbicella annularis, Porites astreoides, Pseudodiploria strigosa, and Siderastrea siderea) were simultaneously incubated with (but did not physically contact) SCTLD-affected colonies of Diploria labyrinthiformis and monitored for lesion appearance over an 8 day experimental period. Paired fragments from each corresponding coral genotype were equivalently exposed to apparently healthy colonies of D. labyrinthiformis to serve as controls; none of these fragments developed lesions throughout the experiment. When tissue-loss lesions appeared and progressed in a disease treatment, the affected coral fragment, and its corresponding control genet, were removed and preserved for future analysis. Based on measures including disease prevalence and incidence, relative risk of lesion development, and lesion progression rates, O. annularis, C. natans, and S. siderea showed the greatest susceptibility to SCTLD in the USVI. These species exhibited earlier average development of lesions, higher relative risk of lesion development, greater lesion prevalence, and faster lesion progression rates compared with the other species, some of which are considered to be more susceptible based on field observations (e.g., P. strigosa). The average transmission rate in the present study was comparable to tank studies in Florida, even though disease donor species differed. Our findings suggest that the tissue loss disease affecting reefs of the USVI has a similar epizootiology to that observed in other regions, particularly Florida.
    Description: This work was supported by the National Science Foundation (Biological Oceanography) award number 1928753 to MB and TS, 1928609 to AC, 1928817 to EM, 19228771 to LM, 1927277 to DH, and 1928761 to AA as well as by VI EPSCoR (NSF #0814417 and NSF #1946412).
    Keywords: Stony coral tissue loss disease ; Coral disease ; Transmission experiment ; Susceptibility ; Lesion progression rate ; Caribbean ; United States Virgin Islands ; Histopathology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fall, P. L., van Hengstum, P. J., Lavold-Foote, L., Donnelly, J. P., Albury, N. A., & Tamalavage, A. E. Human arrival and landscape dynamics in the northern Bahamas. Proceedings of the National Academy of Sciences of the United States of America, 118(10), (2021): e2015764118, https://doi.org/10.1073/pnas.2015764118.
    Description: The first Caribbean settlers were Amerindians from South America. Great Abaco and Grand Bahama, the final islands colonized in the northernmost Bahamas, were inhabited by the Lucayans when Europeans arrived. The timing of Lucayan arrival in the northern Bahamas has been uncertain because direct archaeological evidence is limited. We document Lucayan arrival on Great Abaco Island through a detailed record of vegetation, fire, and landscape dynamics based on proxy data from Blackwood Sinkhole. From about 3,000 to 1,000 y ago, forests dominated by hardwoods and palms were resilient to the effects of hurricanes and cooling sea surface temperatures. The arrival of Lucayans by about 830 CE (2σ range: 720 to 920 CE) is demarcated by increased burning and followed by landscape disturbance and a time-transgressive shift from hardwoods and palms to the modern pine forest. Considering that Lucayan settlements in the southern Bahamian archipelago are dated to about 750 CE (2σ range: 600 to 900 CE), these results demonstrate that Lucayans spread rapidly through the archipelago in less than 100 y. Although precontact landscapes would have been influenced by storms and climatic trends, the most pronounced changes follow more directly from landscape burning and ecosystem shifts after Lucayan arrival. The pine forests of Abaco declined substantially between 1500 and 1670 CE, a period of increased regional hurricane activity, coupled with fires on an already human-impacted landscape. Any future intensification of hurricane activity in the tropical North Atlantic Ocean threatens the sustainability of modern pine forests in the northern Bahamas.
    Description: This research was supported by NSF Awards GSS-1118340 (P.L.F.), OCE-1356509 (P.J.v.H.), OCE-1703087 (P.J.v.H.), and OCE-1356708 (J.P.D.).
    Keywords: Anthropogenic burning ; Lucayan ; Caribbean ; Pollen ; Vegetation change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...