ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (291)
  • Open Access-Papers  (291)
  • 2005-2009  (291)
  • 1950-1954
  • 2005  (291)
Collection
  • Articles  (291)
Years
  • 2005-2009  (291)
  • 1950-1954
Year
  • 1
    Publication Date: 2017-04-04
    Description: The High Agri River Valley is a Quaternary basin located along the hinge of the Southern Apennines fold-and-thrust belt. The inner margin of the orogen has been affected by intense transtensional and normal faulting, which accompanied to vigorous volcanism during the Quaternary. Marker tephra layers are distributed across the whole Southern Italy and provide a powerful tool to constrain both the size of eruptions and the regional activity of extensional faults controlling basin evolution. Paleoseismological trenching within the Monti della Maddalena range, that borders the Agri River valley to the south-west, has exposed a faulted stratigraphic sequence and recovered a 10 cm thick tephra layer involved in deformation. This is the first tephra horizon recognized in the high Agri valley, which, based on the stratigraphic study of the trench, lies in a primary position. 40Ar/39Ar dating constrain its age to 266 ka and provide an important marker for the Middle Pleistocene tephrochronology of the region. Together with dating, geochemical analysis suggests a possible volcanic source in the Campanian region.
    Description: Submitted
    Description: open
    Keywords: tephra layer, 40Ar/39Ar dating, Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Format: 175559 bytes
    Format: 4411003 bytes
    Format: 1933003 bytes
    Format: 2549745 bytes
    Format: 324965 bytes
    Format: 84992 bytes
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: We search for faint CaII lines in the spectra of about 800 apparently single white dwarfs observed at high resolution for the SPY (ESO Supernova Progenitor Survey) survey. Photospheric Ca is detected in 24 DAZ; in 25 mostly hot objects the observed lines must be interstellar. The distribution of metal abundances is discussed and compared with the predictions of the accretion/diffusion scenario. We argue that the observations are easier to understand in a scenario of continuous ongoing accretion with rates varying with the conditions of the ambient medium, rather than with the strongly idealized ``two phase accretion/diffusion scenario'' of Dupuis et al. (1992, 1993a, 1993b).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-29
    Description: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Description: Published
    Description: 93-108
    Description: partially_open
    Keywords: trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-14
    Description: On November 3, 2002, a moment-magnitude (Mw) 7.9 earthquake produced 340 km of surface rupture on the Denali fault and two related faults in central Alaska. The rupture, which proceeded from west to east, began with a 40-km-long break on a previously unknown thrust fault. Estimates of surface slip on this thrust were 3-6 m. Next came the principal surface break, along 220 km of the Denali fault. There, right-lateral offset averaged almost 5 m and increased eastward to a maximum of nearly 9 m. Finally, slip turned southeastward onto the Totschunda fault, where dextral offsets up to 3 m continued for another 70 km. This three-part rupture ranks among the longest documented strike-slip events of the past two centuries. The surface-slip distribution supports and clarifies models of seismological and geodetic data that indicated initial thrusting followed by rightlateral strike slip, with the largest moment release near the east end of the Denali fault. The Denali fault ruptured beneath the Trans-Alaska oil pipeline. The pipeline withstood almost 6 m of lateral offset, because engineers designed it to survive such offsets based on pre-construction geological studies. The Denali fault earthquake was typical of large-magnitude earthquakes on major intracontinental strike-slip faults, in the length of the rupture, the multiple fault strands that ruptured, and the variable slip along strike.
    Description: Published
    Description: 565-578
    Description: open
    Keywords: Earth crust ; earthquakes ; faulting ; slip ; pipelines ; Denali fault ; Susitna Glacier fault ; Totschunda fault ; Surface rupture ; November 3, 2002 M7.9 earthquake ; Alaska ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1464275 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In this work we present seismological and ground deformation evidence for the phase preparing the July 18 to August 9, 2001 flank eruption at Etna. The analysis performed, through data from the permanent seismic and ground deformation networks, highlighted a strong relationship between seismic strain release at depth and surface deformation. This joint analysis provided strong constraints on the magma rising mechanisms. We show that in the last ten years, after the 1991–1993 eruption, an overall accumulation of tension has affected the volcano. Then we investigate the months preceding the 2001 eruption. In particular, we analyse the strong seismic swarm on April 20–24, 2001, comprising more than 200 events (Mmax = 3.6) with prevalent dextral shear fault mechanisms in the western flank. The swarm showed a ca. NE-SW earthquake alignment which, in agreement with previous cases, can be interpreted as the response of the medium to an intrusive process along the approximately NNW-SSE volcano-genetic trend. These mechanisms, leading to the July 18 to August 9, 2001 flank eruption, are analogous to ones observed some months before the 1991–1993 flank eruption and, more recently, in January 1998 before the February-November 1999 summit eruption.
    Description: Published
    Description: 1469-1487
    Description: partially_open
    Keywords: Ground deformation ; volcano seismology ; Mt. Etna Volcano ; intrusive mechanism ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 513 bytes
    Format: 878745 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We report on the first period of the 2002 Etna eruption started on 27th October and ended on 5th November, occurring 15 months after the end of the 2001 eruption. Volcanological and geochemical data are presented in order to characterize the complex intrusion mechanism that contemporaneously involved the NE and S flanks of the volcano. Preliminary data outline that two distinct magma intrusions fed the eruptive fissures. Strong fire fountain activity mainly from the S fissure, produced copious ash fall in eastern Sicily, causing prolonged closure of Catania and Reggio Calabria airports. Lava emitted from the NE fissure formed a 6.2 km long lava flow field that destroyed the tourist facilities of Piano Provenzana area and part of Linguaglossa pine forest.
    Description: Published
    Description: 1-10
    Description: reserved
    Keywords: Volcanic eruption ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 337143 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-03
    Description: The Pollino Range area represents the most prominent gap in seismicity within the southern Apennines. Geomorphic and trenching investigations along the Castrovillari fault indicate that this normal fault is a major seismogenic fault within the southern part of this gap. At least four surface-faulting earthquakes have occurred on this fault since late Pleistocene age. Radiocarbon dating coupled with historical consideration set the time of the most recent earthquake as most likely to be between 530 A.D. and 900 A.D., with the possible widest interval of 530–1100 A.D. No evidence for this event has been found in the historical records, although its age interval falls within the time spanned by the seismic catalogues. Slip per event ranges between 0.5 and 1.6 m, with a minimum rupture length of 13 km. These values suggest a M 6.5–7.0 for the paleoearthquakes. The minimum long-term vertical slip rate obtained from displaced geomorphic features is of 0.2–0.5 mm/yr. A vertical slip-rate of about 1 mm/yr is also inferred from trenching data. The inter-event interval obtained from trench data ranges between 940 and 7760 years (with the young part of the interval possibly more representative; roughly 940–3000 years). The time elapsed since the most recent earthquake ranges between a minimum of 900–1100 and a maximum of 1470 years. The seismic behavior of this fault appears to be consistent with that of other major seismogenic faults of the central-southern Apennines. The Pollino case highlights the fact that geological investigations represent a potentially useful technique to characterize the seismic hazard of ‘silent’ areas for which adequate historical and seismological data record are not available.
    Description: Published
    Description: 199-217
    Description: N/A or not JCR
    Description: reserved
    Keywords: seismic fault behavior ; seismic gap ; seismogenic fault ; southern Italy ; surface faulting ; paleoearthquakes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1048890 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This study summarizes the results of structural, geochemical and seismological surveys carried out at Nisyros volcano (Aegean Sea, Greece) during 1999–2001. Field mapping and mesostructural measurements at the summit caldera (Lakki plain) indicate that faults follow two main strikes: NE-SW and N-S. The N-S striking fault depicts extensional features accommodating the left-lateral component of motion of the NE-SW- striking main faults. The NE-SW preferred strike of the Lakki faults and of the mineral-filled veins as well as the distribution and NE-SW elongation of the hydrothermal craters indicate that tectonics plays a major role in controlling the fluid pathway in the Nisyros caldera. The same NE-SW trend is depicted by CO2 anomalies revealed through detailed soil CO2 flux surveys, thus indicating a structural control on the pattern of the hydrothermal degassing. Degassing processes account for a thermal energy release of about 43 MW, most of which occurs at Lofos dome, an area that was affected by hydrothermal eruptions in historical times. The seismic study was conducted in June 2001, using a deployment specifically aimed at detecting signals of magmatic-hydrothermal origin. Our instruments recorded local and regional earthquakes, a few local longperiod events (LP), and bursts of monochromatic tremor. Local earthquake activity is concentrated beneath the caldera, at depths generally shallower than 6 km. Planewave decomposition of tremor signal indicates a shallow (〈200 m) source located in the eastern part of the caldera. Conversely, LP events depict a source located beneath the central part of the caldera, in the area of Lofos dome, at depths in the 1–2-km range. In agreement with geochemical and structural measurements, these data suggest that both the deeper and shallower part of the hydrothermal system are subjected to instability in the fluid flow regimes, probably consequent to transient pressurization of the reservoir. These instabilities may be related to input of hot fluids from the deeper magmatic system, as suggested by the variations in geochemical parameters observed after the 1997–1999 unrest episode. The significance of seismological and geochemical indicators as precursors of hydrothermal explosive activity at Nisyros is discussed.
    Description: Published
    Description: 358-369
    Description: partially_open
    Keywords: Hydrothermal systems ; Seismicity ; Soil CO2 flux ; Gas geochemistry ; Structure of volcanoes ; Tectonics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 436 bytes
    Format: 691861 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slipdistribution data can be used to infer moment release along other active fault traces.
    Description: Published
    Description: S23–S52
    Description: reserved
    Keywords: Surface Rupture ; Slip Distribution ; Denali fault ; Totschunda fault ; 3 November 2002 M 7.9 Earthquake ; Alaska ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2137599 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...