ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (3)
  • Artikel (Open Access)  (3)
  • Neueste Artikel (Zeitschrifteninhaltsverzeichnisse / in press)
  • Numerical modeling  (3)
  • Springer  (3)
  • Springer Nature
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 39 (2016): 311-332, doi:10.1007/s12237-015-0011-y.
    Beschreibung: Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
    Beschreibung: NKG, ALA, and RPS acknowledge support from the USGS Coastal and Marine Geology Program. DKR gratefully acknowledges support from NSF (OCE-1314642) and NIEHS (1P50-ES021923-01). MJB and JMPV gratefully acknowledge support from NOAA NOS NCCOS (NA05NOS4781201 and NA11NOS4780043). MJB and SJL gratefully acknowledge support from the Strategic Environmental Research and Development Program—Defense Coastal/Estuarine Research Program (RC-1413 and RC-2245).
    Schlagwort(e): Numerical modeling ; Hydrodynamics ; Ecological modeling ; Ecosystem modeling ; Skill assessment
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 40 (2017): 22-36, doi:10.1007/s12237-016-0138-5.
    Beschreibung: Geomorphology is a fundamental control on ecological and economic function of estuaries. However, relative to open coasts, there has been little quantification of storm-induced bathymetric change in back-barrier estuaries. Vessel-based and airborne bathymetric mapping can cover large areas quickly, but change detection is difficult because measurement errors can be larger than the actual changes over the storm timescale. We quantified storm-induced bathymetric changes at several locations in Chincoteague Bay, Maryland/Virginia, over the August 2014 to July 2015 period using fixed, downward-looking altimeters and numerical modeling. At sand-dominated shoal sites, measurements showed storm-induced changes on the order of 5 cm, with variability related to stress magnitude and wind direction. Numerical modeling indicates that the predominantly northeasterly wind direction in the fall and winter promotes southwest-directed sediment transport, causing erosion of the northern face of sandy shoals; southwesterly winds in the spring and summer lead to the opposite trend. Our results suggest that storm-induced estuarine bathymetric change magnitudes are often smaller than those detectable with methods such as LiDAR. More precise fixed-sensor methods have the ability to elucidate the geomorphic processes responsible for modulating estuarine bathymetry on the event and seasonal timescale, but are limited spatially. Numerical modeling enables interpretation of broad-scale geomorphic processes and can be used to infer the long-term trajectory of estuarine bathymetric change due to episodic events, when informed by fixed-sensor methods.
    Schlagwort(e): Bathymetric change ; Sediment transport ; Numerical modeling ; Back-barrier estuary
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-07-20
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Light, C., Arbic, B., Martin, P., Brodeau, L., Farrar, J., Griffies, S., Kirtman, B., Laurindo, L., Menemenlis, D., Molod, A., Nelson, A., Nyadjro, E., O’Rourke, A., Shriver, J., Siqueira, L., Small, R., & Strobach, E. Effects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models. Climate Dynamics, (2022): 1–27, https://doi.org/10.1007/s00382-022-06257-6.
    Beschreibung: High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018. https://doi.org/10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (〈 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the “drizzle effect”, in which precipitation is not temporally intermittent to the extent found in observations.
    Beschreibung: Support for CXL’s effort on this project was provided by a Research Experiences for Undergraduates (REU) supplement for National Science Foundation (NSF) grant OCE-1851164 to BKA, which also provided partial support for PEM. In addition, BKA acknowledges NSF grant OCE-1351837, which provided partial support for AKO, Office of Naval Research grant N00014-19-1-2712 and NASA grants NNX17AH55G, which also provided partial support for ADN, and 80NSSC20K1135. JTF’s participation, and the SPURS-II buoy data, were funded by NASA grants 80NSSC18K1494 and NNX15AG20G.
    Schlagwort(e): Precipitation ; High-frequency precipitation ; Numerical modeling ; High-resolution models ; Coupled ocean-atmosphere models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...