ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (4)
  • Neueste Artikel (Zeitschrifteninhaltsverzeichnisse / in press)  (4)
  • Artikel (Open Access)
  • 2020-2024  (4)
  • Journal of Machine Learning Research  (4)
  • 9951
Sammlung
  • Artikel  (4)
Datenquelle
  • Neueste Artikel (Zeitschrifteninhaltsverzeichnisse / in press)  (4)
  • Artikel (Open Access)
Erscheinungszeitraum
Jahr
Zeitschrift
Thema
  • 1
    Publikationsdatum: 2022
    Beschreibung: Real-world applications of machine learning tools in high-stakes domains are often regulated to be fair, in the sense that the predicted target should satisfy some quantitative notion of parity with respect to a protected attribute. However, the exact tradeoff between fairness and accuracy is not entirely clear, even for the basic paradigm of classification problems. In this paper, we characterize an inherent tradeoff between statistical parity and accuracy in the classification setting by providing a lower bound on the sum of group-wise errors of any fair classifiers. Our impossibility theorem could be interpreted as a certain uncertainty principle in fairness: if the base rates differ among groups, then any fair classifier satisfying statistical parity has to incur a large error on at least one of the groups. We further extend this result to give a lower bound on the joint error of any (approximately) fair classifiers, from the perspective of learning fair representations. To show that our lower bound is tight, assuming oracle access to Bayes (potentially unfair) classifiers, we also construct an algorithm that returns a randomized classifier which is both optimal (in terms of accuracy) and fair. Interestingly, when the protected attribute can take more than two values, an extension of this lower bound does not admit an analytic solution. Nevertheless, in this case, we show that the lower bound can be efficiently computed by solving a linear program, which we term as the TV-Barycenter problem, a barycenter problem under the TV-distance. On the upside, we prove that if the group-wise Bayes optimal classifiers are close, then learning fair representations leads to an alternative notion of fairness, known as the accuracy parity, which states that the error rates are close between groups. Finally, we also conduct experiments on real-world datasets to confirm our theoretical findings.
    Print ISSN: 1532-4435
    Digitale ISSN: 1533-7928
    Thema: Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022
    Beschreibung: We show that cascaded diffusion models are capable of generating high fidelity images on the class-conditional ImageNet generation benchmark, without any assistance from auxiliary image classifiers to boost sample quality. A cascaded diffusion model comprises a pipeline of multiple diffusion models that generate images of increasing resolution, beginning with a standard diffusion model at the lowest resolution, followed by one or more super-resolution diffusion models that successively upsample the image and add higher resolution details. We find that the sample quality of a cascading pipeline relies crucially on conditioning augmentation, our proposed method of data augmentation of the lower resolution conditioning inputs to the super-resolution models. Our experiments show that conditioning augmentation prevents compounding error during sampling in a cascaded model, helping us to train cascading pipelines achieving FID scores of 1.48 at 64x64, 3.52 at 128x128 and 4.88 at 256x256 resolutions, outperforming BigGAN-deep, and classification accuracy scores of 63.02% (top-1) and 84.06% (top-5) at 256x256, outperforming VQ-VAE-2.
    Print ISSN: 1532-4435
    Digitale ISSN: 1533-7928
    Thema: Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022
    Beschreibung: Decision tree learning is a widely used approach in machine learning, favoured in applications that require concise and interpretable models. Heuristic methods are traditionally used to quickly produce models with reasonably high accuracy. A commonly criticised point, however, is that the resulting trees may not necessarily be the best representation of the data in terms of accuracy and size. In recent years, this motivated the development of optimal classification tree algorithms that globally optimise the decision tree in contrast to heuristic methods that perform a sequence of locally optimal decisions. We follow this line of work and provide a novel algorithm for learning optimal classification trees based on dynamic programming and search. Our algorithm supports constraints on the depth of the tree and number of nodes. The success of our approach is attributed to a series of specialised techniques that exploit properties unique to classification trees. Whereas algorithms for optimal classification trees have traditionally been plagued by high runtimes and limited scalability, we show in a detailed experimental study that our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances, providing several orders of magnitude improvements and notably contributing towards the practical use of optimal decision trees.
    Print ISSN: 1532-4435
    Digitale ISSN: 1533-7928
    Thema: Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022
    Beschreibung: Finding parameters in a deep neural network (NN) that fit training data is a nonconvex optimization problem, but a basic first-order optimization method (gradient descent) finds a global optimizer with perfect fit (zero-loss) in many practical situations. We examine this phenomenon for the case of Residual Neural Networks (ResNet) with smooth activation functions in a limiting regime in which both the number of layers (depth) and the number of weights in each layer (width) go to infinity. First, we use a mean-field-limit argument to prove that the gradient descent for parameter training becomes a gradient flow for a probability distribution that is characterized by a partial differential equation (PDE) in the large-NN limit. Next, we show that under certain assumptions, the solution to the PDE converges in the training time to a zero-loss solution. Together, these results suggest that the training of the ResNet gives a near-zero loss if the ResNet is large enough. We give estimates of the depth and width needed to reduce the loss below a given threshold, with high probability.
    Print ISSN: 1532-4435
    Digitale ISSN: 1533-7928
    Thema: Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...