ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Harpenden : Terra Publ.
    Call number: 9/M 10.0424
    Type of Medium: Monograph available for loan
    Pages: X, 292 S. , Ill., graph. Darst.
    Edition: 3rd ed.
    ISBN: 190354419X , 978-1-903544-19-8
    Classification:
    Sedimentology
    Note: Erscheinungsjahr in Vorlageform:c 2006
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Amsterdam [u.a.] : Elsevier
    Associated volumes
    Call number: M 09.0381
    In: Sedimentary basins of the world
    Description / Table of Contents: In recent years, there have been rapid strides in our understanding of plate-tectonic processes, many developments in methods of basin analysis, and the accumulation of much new surface and subsurface geological and geophysical data. Projects such as COCORP (in the United States) and Lithoprobe (in Canada) have provided essential insights into the deep crustal structure of the continent. Synthesis of all the available information about North America's geological regions has not been attempted systematically since the 'Decade of North American Geology' project undertaken by the Geological Society of America and the Geological Survey of Canada nearly twenty years ago. The book commences with a summary of the Phanerozoic geological history of the United States and Canada, illustrated with a suite of new paleogeographic maps, and tying in each of the subsequent regional chapters by the inclusion of numerous cross-references. This followed by a set of fifteen regional syntheses of the principal tectonic regions of the United States and Canada, focusing on the stratigraphic and tectonic history of the major sedimentary basins.Most of these chapters have been contributed by specialists, drawing on their own research, and providing interpretive summaries of a type not previously attempted. This book features: up to date synthesis of the sedimentary/tectonic history of the major areas of the United States and Canada; up to date references; and, many new coloured maps.
    Type of Medium: Monograph available for loan
    Pages: XII, 610 S.
    Edition: 1st ed.
    ISBN: 9780444504258
    Series Statement: Sedimentary basins of the world 5
    Classification:
    Sedimentology
    Note: Erscheinungsjahr in Vorlageform:2008
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: 11/M 01.0114
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The review chapters in this volume were the basis for a short course on sulfate minerals sponsored by the Mineralogical Society of America (MSA) November 11-12, 2000 in Tahoe City, California, prior to the Annual Meeting of MSA, the Geological Society of America, and other associated societies in nearby Reno, Nevada. The conveners of the course (and editors of this volume of Reviews in Mineralogy and Geochemistry), Alpers, John Jambor, and Kirk Nordstrom, also organized related topical sessions at the GSA meeting on sulfate minerals in both hydrothermal and low-temperature environments. Sulfate is an abundant and ubiquitous component of Earth's lithosphere and hydrosphere. Sulfate minerals represent an important component of our mineral economy, the pollution problems in our air and water, the technology for alleviating pollution, and the natural processes that affect the land we utilize. Vast quantities of gypsum are consumed in the manufacture of wallboard, and calcium sulfates are also used in sculpture in the forms of alabaster (gypsum) and papier-mache (bassanite). For centuries, AI-sulfate minerals, or "alums," have been used in the tanning and dyeing industries, and these sulfate minerals have also been a minor source of aluminum metal. Barite is used extensively in the petroleum industry as a weighting agent during drilling, and celestine (also known as "celestite") is a primary source of strontium for the ceramics, metallurgical, glass, and television face-plate industries. Jarosite is a major waste product of the hydrometallurgical processing of zinc ores and is used in agriculture to reduce alkalinity in soils. At many mining sites, the extraction and processing of coal or metal-sulfide ores (largely for gold, silver, copper, lead, and zinc) produce waste materials that generate acid-sulfate waters rich in heavy metals, commonly leading to contamination of water and sediment. Concentrated waters associated with mine wastes may precipitate a variety of metal-sulfate minerals upon evaporation, oxidation, or neutralization. Some of these sulfate minerals are soluble and store metals and acidity only temporarily, whereas others are insoluble and improve water quality by removing metals from the water column. There is considerable scientific interest in the mineralogy and geochemistry of sulfate minerals in both high-temperature (igneous and hydrothermal) and low-temperature (weathering and evaporite) environments. The physical scale of processes affected by aqueous sulfate and associated minerals spans from submicroscopic reactions at mineral-water interfaces to global issues of oceanic cycling and mass balance, and even to extraterrestrial applications in the exploration of other planets and their satellites. In mineral exploration, minerals of the alunite-jarosite supergroup are recognized as key components of the advanced argillic (acid-sulfate) hydrothermal alteration assemblage, and supergene sulfate minerals can be useful guides to primary sulfide deposits. The role of soluble sulfate minerals formed from acid mine drainage (and its natural equivalent, acid rock drainage) in the storage and release of potentially toxic metals associated with wet-dry climatic cycles (on annual or other time scales) is increasingly appreciated in environmental studies of mineral deposits and of waste materials from mining and mineral processing. This volume compiles and synthesizes current information on sulfate minerals from a variety of perspectives, including crystallography, geochemical properties, geological environments of formation, thermodynamic stability relations, kinetics of formation and dissolution, and environmental aspects. The first two chapters cover crystallography (Chapter 1) and spectroscopy (Chapter 2). Environments with alkali and alkaline earth sulfates are described in the next three chapters, on evaporites (Chapter 3), barite-celestine deposits (Chapter 4), and the kinetics of precipitation and dissolution of gypsum, barite, and celestine (Chapter 5). Acidic environments are the theme for the next four chapters, which cover soluble metal salts from sulfide oxidation (Chapter 6), iron and aluminum hydroxysulfates (Chapter 7), jarosites in hydrometallugy (Chapter 8), and alunite-jarosite crystallography, thermodynamics, and geochronology (Chapter 9). The next two chapters discuss thermodynamic modeling of sulfate systems from the perspectives of predicting sulfate-mineral solubilities in waters covering a wide range in composition and concentration (Chapter 10) and predicting interactions between sulfate solid solutions and aqueous solutions (Chapter 11). The concluding chapter on stable-isotope systematics (Chapter 12) discusses the utility of sulfate minerals in understanding the geological and geochemical processes in both high- and low-temperature environments, and in unraveling the past evolution of natural systems through paleoclimate studies.
    Type of Medium: Monograph available for loan
    Pages: xiii, 608 S.
    ISBN: 0-939950-52-9 , 978-0-939950-52-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 40
    Classification:
    Mineralogy
    Note: Chapter 1. The Crystal chemistry of Sulfate Minerals by Frank C. Hawthorne, Servey V. Krivovichev, and Peter C. Burns, p. 1 - 112 Chapter 2. X-ray and Vibrational Spectroscopy of Sulfate in Earth Materials by Satish C. B. Myneni, p. 113 - 172 Chapter 3. Sulfate Minerals in Evaporite Deposits by Ronald J. Spencer, p. 173 - 192 Chapter 4. Barite-Celestine Geochemistry and Environments of Formation by Jeffrey S. Hanor, p. 193 - 276 Chapter 5. Precipitation and Dissolution of Alkaline Earth Sulfates: Kinetics and Surface Energy by A. Hina and G. H. Nancollas, p. 277 - 302 Chapter 6. Metal-sulfate Salts from Sulfide Mineral Oxidation by John L. Jambor, D. Kirk Nordstrom, and Charles N. Alpers, p. 303 - 350 Chapter 7. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters by J. M. Bigham and D. Kirk Nordstrom, p. 351 - 404 Chapter 8. Jarosites and Their Application in Hydrometallurgy by John E. Dutrizac and John L. Jambor, p. 405 - 452 Chapter 9. Alunite-Jarosite Crystallography, Thermodynamics, and Geochemistry by R. E. Stoffregen, C. N.. Alpers, and John L. Jambor, p. 453 - 480 Chapter 10. Solid-Solution Solubilities and Thermodynamics: Sulfates, Carbonates and Halides by Pierre Glynn, p. 481 - 512 Chapter 11. Predicting Sulfate-Mineral Solubility in Concentrated Waters by Carol Ptacek and David Blowes, p. 513 - 540 Chapter 12. Stable Isotope Systematics of Sulfate Minerals by Robert R. Seal, II, Charles N. Alpers, and Robert O. Rye, p. 541 - 602
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Soc. of America
    Associated volumes
    Call number: 11/M 01.0313
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The review chapters in this volume were the basis for a short course on molecular modeling theory jointly sponsored by the Geochemical Society (GS) and the Mineralogical Society of America (MSA) May 18-20, 2001 in Roanoke, Virginia which was held prior to the 2001 Goldschmidt Conference in nearby Hot Springs, Virginia. Dr. William C. Luth has had a long and distinguished career in research, education and in the government. He was a leader in experimental petrology and in training graduate students at Stanford University. His efforts at Sandia National Laboratory and at the Department of Energy's headquarters resulted in the initiation and long-term support of many of the cutting edge research projects whose results form the foundations of these short courses. Bill's broad interest in understanding fundamental geochemical processes and their applications to national problems is a continuous thread through both his university and government career. He retired in 1996, but his efforts to foster excellent basic research, and to promote the development of advanced analytical capabilities gave a unique focus to the basic research portfolio in Geosciences at the Department of Energy. He has been, and continues to be, a friend and mentor to many of us. It is appropriate to celebrate his career in education and government service with this series of courses in cutting-edge geochemistry that have particular focus on Department of Energy-related science, at a time when he can still enjoy the recognition of his contributions. Molecular modeling methods have become important tools in many areas of geochemical and mineralogical research. Theoretical methods describing atomistic and molecular-based processes are now commonplace in the geosciences literature and have helped in the interpretation of numerous experimental, spectroscopic, and field observations. Dramatic increases in computer power-involving personal computers, workstations, and massively parallel supercomputers-have helped to increase our knowledge of the fundamental processes in geochemistry and mineralogy. All researchers can now have access to the basic computer hardware and molecular modeling codes needed to evaluate these processes. The purpose of this volume of Reviews in Mineralogy and Geochemistry is to provide the student and professional with a general introduction to molecular modeling methods and a review of various applications of the theory to problems in the geosciences. Molecular mechanics methods that are reviewed include energy minimization, lattice dynamics, Monte Carlo methods, and molecular dynamics. Important concepts of quantum mechanics and electronic structure calculations, including both molecular orbital and density functional theories, are also presented. Applications cover a broad range of mineralogy and geochemistry topics-from atmospheric reactions to fluid-rock interactions to properties of mantle and core phases. Emphasis is placed on the comparison of molecular simulations with experimental data and the synergy that can be generated by using both approaches in tandem. We hope the content of this review volume will help the interested reader to quickly develop an appreciation for the fundamental theories behind the molecular modeling tools and to become aware of the limits in applying these state-of-the-art methods to solve geosciences problems.
    Type of Medium: Monograph available for loan
    Pages: xii, 531 S.
    ISBN: 0-939950-54-5 , 978-0-939950-54-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 42
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Molecular Modeling in Mineralogy and Geochemistry by Randall T. Cygan, p. 1 - 36 Chapter 2. Simulating the Crystal Structures and Properties of Ionic Materials From Interatomic Potentials by Julian D. Gale, p. 37 - 62 Chapter 3. Application of Lattice Dynamics and Molecular Dynamics Techniques to Minerals and Their Surfaces by Steve C. Parker, Nora H. de Leeuw, Ekatarina Bourova, and David J. Cooke, p. 63 - 82 Chapter 4. Molecular Simulations of Liquid and Supercritical Water: Thermodynamics, Structure, and Hydrogen Bonding by Andrey G. Kalinichev, p. 83 - 130 Chapter 5. Molecular Dynamics Simulations of Silicate Glasses and Glass Surfaces by Stephen H. Garofalini, p. 131 - 168 Chapter 6. Molecular Models of Surface Relaxation, Hydroxylation, and Surface Charging at Oxide-Water Interfaces by James R. Rustad, p. 169 - 198 Chapter 7. Structure and Reactivity of Semiconducting Mineral Surfaces: Convergence of Molecular Modeling and Experiment by Kevin M. Rosso, p. 199 - 272 Chapter 8. Quantum Chemistry and Classical Simulations of Metal Complexes in Aqueous Solutions by David M. Sherman, p. 273 - 318 Chapter 9. First Principles Theory of Mantle and Core Phases by Lars Stixrude, p. 319 - 344 Chapter 10. A Computational Quantum Chemical Study of the Bonded Interactions in Earth Materials and Structurally and Chemically Related Molecules by G. V. Gibbs, Monte B. Boisen, Jr., Lesa L. Beverly, and Kevin M. Rosso, p. 345 - 382 Chapter 11. Modeling the Kinetics and Mechanisms of Petroleum and Natural Gas Generation: A First Principles Approach by Yitian Xiao, p. 383 - 436 Chapter 12. Calculating the NMR Properties of Minerals, Glasses, and Aqueous Species by John D. Tossell, p. 437 - 458 Chapter 13. Interpretation of Vibrational Spectra Using Molecular Orbital Theory Calculations by James D. Kubicki, p. 459 - 484 Chapter 14. Molecular Orbital Modeling and Transition State Theory in Geochemistry by Mihali A. Felipe, Yitian Xiao, and James D. Kubicki, p. 485 - 531
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 93.0804
    In: Reviews in mineralogy
    Description / Table of Contents: This volume represents the proceedings of a course by the same title held at Harbor House Resort and Conference Center on Nantucket Island off the coast of Massachusetts, October 22-24, 1993. Numerous minerals are known to induce pulmonary diseases. The asbestos minerals (chrysotile and asbestiform amphiboles) are by far the most infamous. However, a number of silica polymorphs, clays, and zeolites have also been studied in great detail, as have several titania polymorphs, hematite, and magnetite (which are often used as negative controls in biological experiments). In fact, the relatively recent attention received by erionite (a fibrous zeolite) has arguably made it the most notorious of the minerals studied thus far. The processes that lead to the development of disease (or pathogenesis) by minerals very likely occur at or near the mineral-fluid interface (as do many geochemical processes!). Thus the field of "mineral-induced pathogenesis" is a prime candidate for interdisciplinary research, involving mineral scientists, health scientists, petrologists, pathologists, geochemists, biochemists, and surface scientists, to name a few. The success of such an interdisciplinary approach rests on the ability of scientists in very different fields to communicate, and this is hampered by vocabulary barriers and an unfamiliarity with concepts, approaches, and problems. It can be difficult enough for a geoscientist or bioscientist to maintain fluency in the many fields tangential to his or her own field, and this problem is only exacerbated when one investigates problems that are crossdisciplinary. Nevertheless, important advances can be facilitated if these barriers are overcome. This review volume and the short course upon which it was based are intended to provide some of the necessary tools for the researcher interested in this area of interdisciplinary research. The chapters present several of the important problems, concepts, and approaches from both the geological and biological ends of the spectrum. These two extremes are partially integrated throughout the book by cross-referencing between chapters. Chapter 1 also presents a general introduction into the ways in which these two areas overlap. However, many of the areas ripe for the interdisciplinarian will become obvious after reading the various chapters. The final chapter of this book discusses some of the regulatory aspects of minerals. Ultimately, the regulatory arena is where this type of interdisciplinary approach can make an impact, and hopefully better communication between all parties will accomplish this goal. A glossary is included at the end of this book, because the complexity of scientific terms in the two fields can thwart even the most enthusiastic of individuals.
    Type of Medium: Monograph available for loan
    Pages: xvi, 584 S.
    ISBN: 0-939950-33-2 , 978-0-939950-33-1
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 28
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Merging the Geological and Biological Sciences: An Integrated Approach to the Study of Mineral-Induced Pulmonary Diseases by George D. Guthrie, Jr. and Brooke T. Mossman, p. 1 - 6 Chapter 2. Rocks, Minerals, and a Dusty World by Cornelius Klein, p. 7 - 60 Chapter 3. Mineralogy of Amphiboles and 1:1 Layer Silicates by David R. Veblen and Ann G. Wylie, p. 61 - 138 Chapter 4. Mineralogy of Clay and Zeolite Dusts (Exclusive of 1:1 Layer Silicates) by David L. Bish and George D. Guthrie, Jr., p. 139 - 184 Chapter 5. Structure and Chemistry of Silica, Metal Oxides, and Phosphates by Peter J. Heaney and Jillian A. Banfield, p. 185 - 234 Chapter 6. Preparation and Purification of Mineral Dusts by Steve J. Chipera, George D. Guthrie, Jr., and David L. Bish, p. 235 - 250 Chapter 7. Mineral Characterization in Biological Studies by George D. Guthrie, Jr., p. 251 - 274 Chapter 8. Surface Chemistry, Structure, and Reactivity of Hazardous Mineral Dust by Michael F. Hochella, Jr., p. 275 - 308 Chapter 9. Limitations of the Stanton Hypothesis by Robert P. Nolan and Arthur M. Langer, p. 309 - 326 Chapter 10. The Surface Thermodynamic Properties of Silicates and Their Interactions with Biological Materials by Rossman F. Giese, Jr. and Carel J. van Oss, p. 327 - 346 Chapter 11. Epidemiology and Pathology of Asbestos-Related Diseases by Agnes B. Kane, p. 347 - 360 Chapter 12. Health Effects of Mineral Dusts Other Than Asbestos by Malcolm Ross, Robert P. Nolan, Arthur M. Langer, and W. Clark Cooper, p. 361 - 408 Chapter 13. Asbestos Lung Burden and Disease Patterns in Man by Andrew Churg, p. 409 - 426 Chapter 14. Defense Mechanisms Against Inhaled Particles and Associated Particle-Cell Interactions by Bruce E. Lehnert, p. 427 - 470 Chapter 15. In Vivo Assays to Evaluate the Pathogenic Effects of Minerals in Rodents by John M. G. Davis, p. 471 - 488 Chapter 16. In Vitro Evaluation of Mineral Cytotoxicity and Inflammatory Activity by Kevin E. Driscoll, p. 489 - 512 Chapter 17. Cellular and Molecular Mechanisms of Disease by Brooke T. Mossman, p. 513 - 522 Chapter 18. Biological Studies on the Carcinogenic Mechanisms of Quartz by Umberto Saffiotti, Lambert N. Daniel, Yan Mao, A. Olufemi Williams, M. Edward Kaighn, Nadera Ahmed, and Alan D. Knapton, p. 523 - 544 Chapter 19. Regulatory Approaches to Reduce Human Health Risks Associated with Exposures to Mineral Fibers by V. T. Vu, p. 545 - 554
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: M 99.0387
    Type of Medium: Monograph available for loan
    Pages: XXIV, 535 S.
    ISBN: 3540611282
    Classification:
    Sedimentology
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: M 96.0550 ; AWI G6-96-0128
    Description / Table of Contents: A lake, as a body of water, is in continuous interaction with the rocks and soils in its drainage basin, the atmosphere, and surface and groundwaters. Human industrial and agricultural activities introduce new inputs and processes into lake systems. This volume is a selection of ten contributions dealing with diverse aspects of lake systems, including such subjects as the geological controls of lake basins and their histories, mixing and circulation patterns in lakes, gaseous exchange between the water and atmosphere, and human input to lakes through atmospheric precipitation and surficial runoff. This work was written with a dual goal in mind: to serve as a textbook and to provide professionals with in-depth expositions and discussions of the more important aspects of lake systems.
    Type of Medium: Monograph available for loan
    Pages: XVI, 334 Seiten , Illustrationen
    Edition: 2. ed.
    ISBN: 3540578919
    Classification:
    Sedimentology
    Language: English
    Note: Contents: 1 Global Distribution of Lakes / M. MEYBECK. - 1 Introduction. - 2 Background Material and Approaches to Global Lake Census. - 2.1 Data Used. - 2.2 Approaches to Global Lake Census. - 3 General Laws of Lake Distribution. - 3.1 Lake Density . - 3.2 Limnic Ratio. - 4 Distribution of Lakes of Tectonic Origin. - 5 Lakes of Glacial Origin. - 5.1 Lake Densities. - 5.2 Global Deglaciated Area. - 5.3 Total Number of Glacial Lakes. - 6 Fluvial Lakes. - 7 Global Distribution of Crater Lakes. - 8 Global Distribution of Saline Lakes. - 8.1 Coastal Lagoons. - 8.2 Salinized Lakes due to Evaporation. - 9 Global Lake Distribution. - 9.1 Extrapolation Approach. - 9.2 Lake Type Approach. - 9.3 Climatic Typology Approach. - 9.4 Lake Distribution in Endorheic Areas. - 9.5 Global Dissolved Salt Distribution in Lakes. - 10 Major Changes in Global Lake Distribution in the Geological Past. - 10.1 Lake Ages. - 10.2 Historical Changes. - 10.3 Postglacial Changes. - 11 Discussion and Conclusions. - References. - 2 Hydrological Processes and the Water Budget of Lakes / T. C. WINTER. - 1 Introduction. - 2 Hydrological System with Regard to Lakes. - 2.1 Interaction of Lakes with Atmospheric Water. - 2.2 Interaction of Lakes with Surface Water. - 2.3 Interaction of Lakes with Subsurface Water. - 2.4 Change in Lake Volume. - 3 Summary. - References. - 3 Hydrological and Thermal Response of Lakes to Climate: Description and Modeling / S. W. HOSTETLER. - 1 Introduction. - 2 Hydrological Response. - 3 The Hydrological Budget. - 4 Hydrological Models. - 5 Thermal Response. - 5.1 Energy Budget and Energy Budget Models. - 5.2 Models and Modeling. - 6 Use of Models to Link Lakes with Climate Change. - 7 Input Data Sets. - 8 Sample Applications. - 9 Summary. - References. - 4 Mixing Mechanisms in Lakes / D. M. IMBODEN and A. WÜEST. - 1 Transport and Mixing. - 2 Lakes as Physical Systems. - 3 Fluid Dynamics: Mathematical Description of Advection and Diffusion. - 3.1 Equations of Fluid Motion. - 3.2 Turbulence, Reynolds' Stress, and Eddy Diffusion. - 3.3 Vertical Momentum Equation. - 3.4 Nonlocal Diffusion and Transilient Mixing. - 4 Density and Stability of Water Column. - 4.1 Equation of State of Water. - 4.2 Potential Temperature and Local Vertical Stability. - 5 Energy Fluxes: Driving Forces Behind Transport and Mixing. - 5.1 Thermal Energy. - 5.2 Potential Energy. - 5.3 Kinetic Energy. - 5.4 Turbulent Kinetic Energy Balance in Stratified Water. - 5.5 Internal Turbulent Energy Fluxes: Turbulence Cascade. - 6 Mixing Processes in Lakes. - 6.1 Waves and Mixing. - 6.2 Mixing in the Surface Layer. - 6.3 Diapycnal Mixing. - 6.4 Boundary Mixing. - 6.5 Double Diffusion. - 6.6 Isopycnal Mixing. - 7 Mixing and Its Ecological Relevance. - 7.1 Time Scales of Mixing. - 7.2 Reactive Species and Patchiness. - 7.3 Mixing and Growth: The Search for an Ecological Steering Factor. - References. - 5 Stable Isotopes of Fresh and Saline Lakes / J. R. GAT. - 1 Introduction. - 1.1 Isotope Separatio During Evaporation. - 2 Small-Area Lakes. - 2.1 Seasonal and Annual Changes. - 2.2 Deep Freshwater Lakes. - 2.3 Transient Surface-Water Bodies. - 3 Interactive and Feedback Systems. - 3.1 Network of Surface-Water Bodies. - 3.2 Recycling of Reevaporated Moisture into the Atmosphere. - 3.3 Large Lakes. - 3.4 Large-Area Lakes with Restricted Circulation. - 4 Saline Lakes. - 4.1 Isotope Hydrology of Large Salt Lakes. - 4.2 Ephemeral Salt Lakes and Sabkhas. - 5 Isotopie Paleolimnology. - 6 Conclusions: From Lakes to Oceans. - References. - 6 Exchange of Chemicals Between the Atmosphere and Lakes / P. VLAHOS, D. MACKAY, S. J. EISENREICH, and KC. HORNBUCKLE. - 1 Introduction. - 2 Air-Water Partitioning Equilibria. - 3 Diffusion Between Water and Air. - 4 Volatilization and Absorption: Double-Resistance Approach. - 5 Factors Affecting Mass-Transfer Coefficients. - 6 Partitioning of Chemical to Paniculate Matter in Air and Water. - 6.1 Air. - 6.2 Water. - 7 Atmospheric Deposition Processes. - 7.1 Dry Deposition. - 7.2 Wet Deposition. - 8 Specimen Calculation. - 8.1 Step 1: Physicochemical Properties. - 8.2 Step 2: Mass-Transfer Coefficients. - 8.3 Step 3: Sorption in Air and Water. - 8.4 Step 4: Equilibrium Status. - 8.5 Step 5: Volatilization and Deposition Rates. - 9 Role of Air-Water Exchange in Lake Mass Balances. - 10 Case Studies. - 10.1 Mass Balance on Siskiwit Lake, Isle Royale. - 10.2 Mass Balance on Lake Superior. - 10.3 Air-Water Exchange in Green Bay, Lake Michigan. - 10.4 Air-Water Exchange in Lake Superior. - 11 Conclusions. - References. - 7 Atmospheric Depositions: Impact of Acids on Lakes / W. STUMM and J. SCHNOOR. - Abstract. - 1 Introduction: Anthropogenic Generation of Acidity. - 1.1 Genesis of Acid Precipitation. - 2 Acidity and Alkalinity: Neutralizing Capacities. - 2.1 Transfer of Acidity (or Alkalinity) from Pollution Through the Atmosphere to Ecosystems. - 3 Acidification of Aquatic and Terrestrial Ecosystems. - 3.1 Disturbance of H+ Balance from Temporal or Spatial Decoupling of the Production and Mineralization of the Biomass. - 3.2 In Situ H+ Ion Neutralization in Lakes. - 3.3 Krug and Frink Revisited. - 4 Brønsted Acids and Lewis Acids: Pollution by Heavy Metals, as Influenced by Acidity. - 4.1 Cycling of Metals. - 4.2 Pb in Soils. - 5 Impact of Acidity on Ecology in Watersheds. - 5.1 Soils. - 5.2 Lakes. - 5.3 Nitrogen Saturation of Forests. - 6 Critical Loads. - 6.1 Critical Load Maps. - 6.2 Models for Critical Load Evaluation. - 7 Case Studies. - 7.1 Chemical Weathering of Crystalline Rocks in the Catchment Area of Acidic Ticino Lakes, Switzerland. - 7.2 Watershed Manipulation Project at Bear Brooks, Maine. - 8 Summary. - References. - 8 Redox-Driven Cycling of Trace Elements in Lakes / J. HAMILTON-TAYLOR and W. DAVISON. - 1 Introduction. - 2 Major Biogeochemical Cycles and Pathways. - 3 Iron and Manganese. - 3.1 Transformations and Cycling. - 3.2 Iron and Manganese Compounds as Carrier Phases. - 4 Sediment-Water Interface. - 4.1 Diffusive Flux from Sediments. - 4.2 Evidence of Little or No Diffusive Efflux from Sediments. - 4.3 Transient Remobilization. - 4.4 Diffusive Flux into Sediments. - 5 Pathways Involving Redox Reactions Directly: Case Studies. - 5.1 Arsenic. - 5.2 Chromium. - 5.3 239,240Pu. - 5.4 Selenium 6 Pathways Involving Redox Reactions Indirectly: Case Studies. - 6.1 137Cs. - 6.2 Stable Pb, 210Pb, and 210Po. - 6.3 Zinc. - 7 Summary and Conclusions. - References. - 9 Comparative Geochemistry of Marine Saline Lakes / F. T. MACKENZIE, S. VINK, R. WOLLAST, and L. CHOU. - 1 Introduction. - 2 General Characteristics of Marine Saline Lakes. - 3 Comparative Sediment-Pore-Water Reactions. - 3.1 Mangrove Lake, Bermuda. - 3.2 Solar Lake, Sinai. - 4 Conclusions. - References. - 10 Organic Matter Accumulation Records in Lake Sediments / P. A. MEYERS and R. ISHIWATARI. - 1 Introduction. - 1.1 Significance of Organic Matter in Lake Sediments. - 1.2 Origins of Organic Matter to Lake Sediments. - 1.3 Alterations of Organic Matter During Deposition. - 1.4 Similarities and Differences Between Organic Matter in Sediments of Lakes and Oceans. - 1.5 Dating of Lake-Sediment Records. - 2 Indicators of Sources and Alterations of Total Organic Matter in Lake Sediments. - 2.1 Source Information Preserved in C/N Ratios of Sedimentary Organic Matter. - 2.2 Source Information from Carbon-Stable Isotopic Compositions. - 2.3 Source Information from Nitrogen-Stable Isotopic Compositions. - 3 Origin and Alterations of Humic Substances. - 4 Sources and Alterations of Lipid Biomarkers. - 4.1 Alteration of Lipids During Deposition. - 4.2 Changes in Sources vs Selective Diagenesis. - 4.3 Effects of Sediment Grain Size on Geolipid Compositions. - 4.4 Source Records of Alkanes in Lake Sediments. - 4.5 Preserv
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: M 96.0318
    Type of Medium: Monograph available for loan
    Pages: XVI, 582 S.
    ISBN: 3540591869
    Classification:
    Sedimentology
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer
    Call number: M 96.0319
    Type of Medium: Monograph available for loan
    Pages: xv, 668 S.
    Edition: 2nd ed.
    ISBN: 038797119X
    Classification:
    Sedimentology
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: 9/M 07.0421(429)
    In: Geological Society special publication
    Description / Table of Contents: The rivers of East Asia are some of the largest and most important to human society and the global economy. They drain a variety of terrains from the Tibetan plateau, the hill country of southern China and the steep mountains of Taiwan. The sediment they carry potentially records the long-term evolution of continental environments within the marine stratigraphic record. Sediments reaching the ocean have to traverse the wide continental shelves where they may be reworked and transported by longshore currents, typhoon storm waves, as well as large ocean currents such as the Kuroshio. Deciphering any marine record requires us to understand the dynamics of sediment transport on the continental shelves, and this region acts as a global type example of such processes. Studies in this volume span a wide range of subdisciplines in the marine sciences and provide new insights into how sediment is distributed offshore after leaving the river mouths.
    Type of Medium: Monograph available for loan
    Pages: vi, 268 S.
    ISBN: 978-1-86239-740-8
    Series Statement: Geological Society special publication 429
    Classification:
    Sedimentology
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...