ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2014-02-06
    Description: Thermohaline convection of subsurface fluids strongly influences heat and mass fluxes within the Earth's crust. The most effective hydrothermal systems develop in the vicinity of magmatic activity and can be important for geothermal energy production and ore formation. As most parts of these systems are inaccessible to direct observations, numerical simulations are necessary to understand and characterize fluid flow. Here, we present a new numerical scheme for thermohaline convection based on the Control Volume Finite Element Method, allowing for unstructured meshes, the representation of sharp thermal and solute fronts in advection-dominated systems and phase separation of variably miscible, compressible fluids. The model is an implementation of the Complex System Modeling Platform CSMP++ and includes an accurate thermodynamic representation of strongly non-linear fluid properties of salt water for magmatic-hydrothermal conditions (up to 1,000 °C, 500 MPa and 100 wt% NaCl). The method ensures that all fluid properties are taken as calculated on the respective node by using a fully upstream-weighted approach, which greatly increases the stability of the numerical scheme. We compare results from our model with two well-established codes, HYDROTHERM and TOUGH2, by conducting benchmarks of different complexity and find good to excellent agreement in the temporal and spatial evolution of the hydrothermal systems. In a simulation with high-temperature, high-salinity conditions currently outside of the range of both HYDROTHERM and TOUGH2, we show the significance of the formation of a solid halite phase, which introduces heterogeneity. Results suggest that salt added by magmatic degassing is not easily vented or accommodated within the crust and can result in dynamic, complex hydrologies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1468-8115
    Electronic ISSN: 1468-8123
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-29
    Description: Article Utilizing supercritical geothermal water could multiply energy production, but the abundance, location and size of such resources is unclear. Here, the authors present numerical simulations and suggest that supercritical water may play a key role in removing heat from all magmatic intrusions. Nature Communications doi: 10.1038/ncomms8837 Authors: Samuel Scott, Thomas Driesner, Philipp Weis
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-14
    Description: Numerical simulation of subaerial, magma-driven, saline hydrothermal systems reveals that fluid phase separation near the intrusion is a first order control on the dynamics and efficiency of heat and mass transfer. Above shallow intrusions emplaced at 〈2.5 km depth, phase separation through boiling of saline liquid leads to accumulation of low-mobility hypersaline brines and halite precipitation, thereby reducing the efficiency of heat and mass transfer. Above deeper intrusions (〉4 km), where fluid pressure is 〉30 MPa, phase separation occurs by condensation of hypersaline brine from a saline intermediate-density fluid. The fraction of brine remains small, and advective, vapor-dominated mass and heat fluxes are maximized. We thus hypothesize that, in contrast to pure water systems, for which shallow intrusions make better targets for supercritical resource exploitation, the optimal targets in saline systems are located above deeper intrusions.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...