ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2023-11-27
    Description: On 12 August 2021, a 〉220 s lasting complex earthquake with M〈sub〉w〈/sub〉 〉 8.2 hit the South Sandwich Trench. Due to its remote location and short interevent times, reported earthquake parameters varied significantly between different international agencies. We studied the complex rupture by combining different seismic source characterization techniques sensitive to different frequency ranges based on teleseismic broadband recordings from 0.001 to 2 Hz, including point and finite fault inversions and the back‐projection of high‐frequency signals. We also determined moment tensor solutions for 88 aftershocks. The rupture initiated simultaneously with a rupture equivalent to a M〈sub〉w〈/sub〉 7.6 thrust earthquake in the deep part of the seismogenic zone in the central subduction interface and a shallow megathrust rupture, which propagated unilaterally to the south with a very slow rupture velocity of 1.2 km/s and varying strike following the curvature of the trench. The slow rupture covered nearly two‐thirds of the entire subduction zone length, and with M〈sub〉w〈/sub〉 8.2 released the bulk of the total moment of the whole earthquake. Tsunami modeling indicates the inferred shallow rupture can explain the tsunami records. The southern segment of the shallow rupture overlaps with another activation of the deeper part of the megathrust equivalent to M〈sub〉w〈/sub〉 7.6. The aftershock distribution confirms the extent and curvature of the rupture. Some mechanisms are consistent with the mainshocks, but many indicate also activation of secondary faults. Rupture velocities and radiated frequencies varied strongly between different stages of the rupture, which might explain the variability of published source parameters.
    Description: Plain Language Summary: The earthquake of 12 August 2021 along the deep‐sea trench of the South Sandwich Islands in the South Atlantic reached a magnitude of 8.2 and triggered a tsunami. The automatic earthquake parameter determination of different agencies showed very different results shortly after the earthquake and partially underestimated the tsunami potential of the earthquake. A possible reason was the complex rupture process and that the tsunami was generated by a long and shallow slow slip rupture sandwiched between more conventional fast slip subevents at its northern and southern ends. In addition, the fault surface, which extended over 450 km, was highly curved striking 150°–220°. We investigated the different components of the seismic wavefields in different frequency ranges and with different methods. The analysis shows how even complex earthquakes can be deciphered by combining analyzing methods. The comparison with aftershocks and the triggered tsunami waves confirms our model that explains the South Sandwich rupture by four subevents in the plate boundary along the curved deep‐sea trench. Here, the depth, rupture velocities, and slip on each segment of the rupture vary considerably. The method can also be applied to other megathrust earthquakes and help to further improve tsunami warnings in the future.
    Description: Key Points: A combination of multiple approaches, inversion setups, and frequency ranges deciphered the complex earthquake of 2021 South Sandwich. The rupture consisted of four subevents with the largest occurring as a shallow slow rupture parallel to the South Sandwich Trench. Forward modeling proves that the large, shallow thrust subevent caused the recorded tsunami.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Agencia Nacional de Investigación y Desarrollo http://dx.doi.org/10.13039/501100020884
    Description: https://ds.iris.edu/wilbert3/find_event
    Description: https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics
    Description: http://www.ioc-sealevelmonitoring.org/
    Description: https://doi.org/10.7289/V5C8276M
    Description: https://www.gfz-potsdam.de/en/software/tsunami-wave-propagations-easywave
    Keywords: ddc:551.22 ; 2021 South Sandwich Earthquake ; seismic characteristics ; tsunamigenic characteristics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 405 (2000), S. 938-941 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-04
    Description: The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr –1 , 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5–6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-10
    Description: Estimating small-scale V P / V S variations at depth can be a powerful tool to infer lithology and hydration of a rock, with possible implications for frictional behavior. In principle, from the differential arrival times of P and S phases from a set of spatially clustered earthquakes, an estimate of the local V P / V S can be extracted, because the V P / V S is the scaling factor between the P and S differential times for each pair of earthquakes. We critically review the technique proposed by Lin and Shearer (2007) , in which the mean value over all stations is subtracted from the differential arrival times of each pair of events in order to make the method independent of a priori information on origin times. The demeaned differential P and S arrival times are plotted on a plane, and the V P / V S ratio is estimated by fitting the points on this plane. We tested the method by both theoretical analysis and numerical simulations of P and S travel times in several velocity models. We found that the method returns exact values of V P / V S only in the case of a medium with homogeneous V P / V S , whereas, when a V P / V S gradient is present, the estimates are biased as an effect of systematic differences between P and S takeoff angles. We demonstrated that this bias arises from the demeaning of the arrival times over the stations. In layered models with V P / V S decreasing with depth, we found that V P / V S is overestimated or underestimated, respectively, for takeoff angles larger or smaller than 90°. Moreover, we calculated analytically the dependence of this bias on the takeoff angles. Our simulations also showed that the difference between the calculated and the expected V P / V S is reduced for simple horizontally layered velocity structures (〈0.06), whereas it is 0.27 in a more realistic velocity model mimicking a subduction zone.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-02
    Description: The very shallow part of subduction megathrusts occasionally hosts tsunami earthquakes, with unusually slow rupture propagation. The aftershock sequence of the 2010 M w  8.8 Maule earthquake, offshore Chile, provides us with the opportunity to study systematic changes in source properties for smaller earthquakes within a single segment of a subduction zone. We invert amplitude spectra for double-couple moment tensors and centroid depths of 71 aftershocks of the Maule earthquake down to magnitudes M w  4.0. In addition, we also derive average source durations. We find that shallower earthquakes tend to have longer normalized source durations on average, similar to the pattern observed previously for larger magnitude events. This depth dependence is observable for thrust and normal earthquakes. The normalized source durations of normal-faulting earthquakes are at the lower end of those for thrust earthquakes, probably because of the higher stress drops of intraplate earthquakes compared to interplate earthquakes. We suggest from the similarity of the depth dependence of normal and thrust events and between smaller and larger magnitude earthquakes that the depth-dependent variation of rigidity, rather than frictional conditional stability at the plate interface, is primarily responsible for the observed pattern. Tsunami earthquakes probably require both low rigidity and conditionally stable frictional conditions; the presence of long-duration moderate-magnitude events is therefore a helpful but not sufficient indicator for areas at risk of tsunami earthquakes. Online Material: Table of earthquake inversion results for the 2010 M w  8.8 Maule, Chile, aftershock sequence.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-01
    Description: Seismic arrays for detection of small earthquakes benefit from array processing aimed at reducing noise levels. We present a frequency-dependent multichannel Wiener filtering (MCWF) technique, which employs an adaptive least-squares method to remove coherent noise in seismic array data. The noise records on a number of reference channels are used to predict the noise on a primary channel, which can then be subtracted from the observed data. A sequence of aftershocks caused by the Mw 6.1 21 February 2008 mainshock in Spitsbergen was recorded by the ARCES array in northern Norway. This aftershock sequence was filtered using the multichannel Wiener filters in both triggered and continuous modes. The Spitsbergen (SPITS) array, at a much closer distance to the source region, provides reliable reference information on the true number of detectable aftershocks. The conventional delay-and-sum beamforming combined with a band-pass filter could detect only 513 aftershocks with 181 false alarms, using a series of constraints comprised of signal-to-noise ratio, back azimuth, and slowness; the multichannel Wiener filtered results found 577 aftershocks with 165 false alarms using the same constraints. A complete automatic multichannel Wiener procedure is developed for event detection on continuous data. An appropriate signal-to-noise ratio threshold for aftershock detection of 2.7 is suggested. Compared to the beamforming method, the MCWF also reduces false alarms when detecting the same number of aftershocks.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-20
    Description: The Maule earthquake (2010 February 27, M w 8.8, Chile) broke the subduction megathrust along a previously locked segment. Based on an international aftershock deployment, catalogues of precisely located aftershocks have become available. Using 23 well-located aftershocks, we calibrate the classic teleseismic backprojection procedure to map the high-frequency seismic radiation emitted during the earthquake. The calibration corrects traveltimes in a standard earth model both with a static term specific to each station, and a ‘dynamic’ term specific to each combination of grid point and station. The second term has been interpolated over the whole slipping area by kriging, and is about an order of magnitude smaller than the static term. This procedure ensures that the teleseismic images of rupture development are properly located with respect to aftershocks recorded with local networks and does not depend on accurate hypocentre location of the main shock. We track a bilateral rupture propagation lasting ~160 s, with its dominant branch rupturing northeastwards at about 3 km s –1 . The area of maximum energy emission is offset from the maximum coseismic slip but matches the zone where most plate interface aftershocks occur. Along dip, energy is preferentially released from two disconnected interface belts, and a distinct jump from the shallower belt to the deeper one is visible after about 20 s from the onset. However, both belts keep on being active until the end of the rupture. These belts approximately match the position of the interface aftershocks, which are split into two clusters of events at different depths, thus suggesting the existence of a repeated transition from stick-slip to creeping frictional regime.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-27
    Description: Splay faults, large thrust faults emerging from the plate boundary to the seafloor in subduction zones, are considered to enhance tsunami generation by transferring slip from the very shallow dip of the megathrust onto steeper faults, thus increasing vertical displacement of the seafloor. These structures are predominantly found offshore, and are therefore difficult to detect in seismicity studies, as most seismometer stations are located onshore. The M w (moment magnitude) 8.8 Maule earthquake on 27 February 2010 affected ~500 km of the central Chilean margin. In response to this event, a network of 30 ocean-bottom seismometers was deployed for a 3 month period north of the main shock where the highest coseismic slip rates were detected, and combined with land station data providing onshore as well as offshore coverage of the northern part of the rupture area. The aftershock seismicity in the northern part of the survey area reveals, for the first time, a well-resolved seismically active splay fault in the submarine forearc. Application of critical taper theory analysis suggests that in the northernmost part of the rupture zone, coseismic slip likely propagated along the splay fault and not the subduction thrust fault, while in the southern part it propagated along the subduction thrust fault and not the splay fault. The possibility of splay faults being activated in some segments of the rupture zone but not others should be considered when modeling slip distributions.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-05
    Description: To overcome the potential contamination of the direct S waves by source-side anisotropy in shear-wave-splitting analysis, we describe a new approach that we call the reference station technique. The technique utilizes direct shear waves recorded at a station pair and depends on maximizing the correlation between the seismic traces at reference and target stations after correcting the reference station for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. The algorithm also provides a delay time between both stations caused, for example, by isotropic heterogeneities. Synthetic tests demonstrate the stability of the estimated parameters, even where variability in near-surface properties (thickness and velocity of sediment layer) exists. We applied the reference station technique to data from seismic experiments at the northern margin of Tibet. Average splitting parameters obtained from the analysis of direct S -wave results are consistent with those obtained from previous SKS splitting measurements. Where differences exist, shear-wave fast polarization estimates resolved from direct S indicate a higher degree of internal consistency for closely spaced stations than those derived from SKS . This is probably due to the much larger number of direct S waves available for splitting measurements compared to SKS for the same observational period, resulting in higher quality measurements. We also demonstrate the ability of the technique to provide improved splitting measurements for temporary stations by following a bootstrap approach in which only a few stations with well-constrained SKS splitting parameters are used as seeds to determine the splitting parameters of a large array in an iterative manner. In addition, the S measurements sample the anisotropic layer with different angles of incidence and back azimuths, thus potentially providing additional constraints on more complicated anisotropic structures, and the interstation delay times could be used for tomographic studies to reduce the bias from anisotropic structure. Online Material: Multisplit software package (C++) with instructions.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-07
    Description: We focus on the relation between seismic and total postseismic afterslip following the Maule M w 8.8 earthquake on 2010 February 27 in central Chile. First, we calculate the cumulative slip released by aftershock seismicity. We do this by summing up the aftershock regions and slip estimated from scaling relations. Comparing the cumulative seismic slip with afterslip models we show that seismic slip of individual aftershocks exceeds locally the inverted afterslip model from geodetic constraints. As the afterslip model implicitly contains the displacements from the aftershocks, this reflects the tendency of afterslip models to smear out the actual slip pattern. However, it also suggests that locally slip for a number of the larger aftershocks exceeds the aseismic slip in spite of the fact that the total equivalent moment of the afterslip exceeds the cumulative moment of aftershocks by a large factor. This effect, seen weakly for the Maule 2010 and also for the Tohoku 2011 earthquake, can be explained by taking into account the uncertainties of the seismicity and afterslip models. In spite of uncertainties, the hypocentral region of the Nias 2005 earthquake is suggested to release a large fraction of moment almost purely seismically. Therefore, these aftershocks are not driven solely by the afterslip but instead their slip areas have probably been stressed by interseismic loading and the mainshock rupture. In a second step, we divide the megathrust of the Maule 2010 rupture into discrete cells and count the number of aftershocks that occur within 50 km of the centre of each cell as a function of time. We then compare this number to a time-dependent afterslip model by defining the ‘afterslip to aftershock ratio’ (ASAR) for each cell as the slope of the best fitting line when the afterslip at time t is plotted against aftershock count. Although we find a linear relation between afterslip and aftershocks for most cells, there is significant variability in ASAR in both the downdip and along-strike directions of the megathrust. We compare the spatial distribution of ASAR with the spatial distribution of seismic coupling, coseismic slip and Bouguer gravity anomaly, and in each case we find no significant correlation.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...