ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 98 (1987), S. 125-133 
    ISSN: 1432-1424
    Keywords: patch clamp ; ionic channels ; vascular endothelium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10−7 to 10−4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near −60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10−7 to 10−4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 112 (1989), S. 67-78 
    ISSN: 1432-1424
    Keywords: removal of Na+ inactivation ; iodate ; bromate ; glutaraldehyde ; DPI 201-106 ; Na+ channel kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Elementary Na+ currents were recorded at 19°C during 220-msec lasting step depolarizations in cell-attached and inside-out patches from cultured neonatal rat cardiocytes in order to study the modifying influence of iodate, bromate and glutaraldehyde on single cardiac Na+ channels. Iodate (10 mmol/liter) removed Na+ inactivation and caused repetitive, burst-like channel activity after treating the cytoplasmic channel surface. In contrast to normal Na+ channels under control conditions, iodate-modified Na+ channels attain two conducting states, a short-lasting one with a voltage-independent lifetime close to 1 msec and, likewise tested between −50 and +10 mV, a long-lasting one being apparently exponentially dependent on voltage. Channel modification by bromate (10 mmol/liter) and glutaraldehyde (0.5 mmol/liter) also included the occurrence of two open states. Also, burst duration depended apparently exponentially on voltage and increased when shifting the membrane in the positive direction, but there was no evidence for two bursting states. Chemically modified Na+ channels retain an apparently normal unitary conductance (12.8±0.5 pS). Of the two substates observed, one of them is remarkable in that it is mostly attained from full-state openings and is very short living in nature; the voltage-independent lifetime was close to 2 msec. Despite removal of inactivation, open probability progressively declined during membrane depolarization. The underlying deactivation process is strongly voltage sensitive but, in contrast to slow Na+ inactivation, responds to a voltage shift in the positive direction with a retardation in kinetics. Chemically modified Na+ channels exhibit a characteristic bursting state much shorter than in DPI-modified Na+ channels, a difference not consistent with the hypothesis of common kinetic properties in noninactivating Na+ channels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 102 (1988), S. 105-119 
    ISSN: 1432-1424
    Keywords: patch clamp ; Na+ channels ; modification ; class 1 antiarrhythmic drugs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Cell-attached patch-clamp experiments were performed in cultured cardicyytes of neonatal rats at 19°C to analyze elementary currents through single Na+ channels under control conditions and in the presence of the class 1 antiarrhythmic drugs amiodarone, propafenone, and diprafenone. As observed in a cell-attached patch with only one functioning Na+ channel, repetitive stepping of the membrane at 0.4 Hz triggered periodically channel openings except during a silent period of about 1.5 min. The latter began and ceased abruptly and did not fit the monoexponential distribution of the run length of sweeps without activity (blank sweeps). Treating the cardiocytes with amiodarone, propafenone or diprafenone (10 to 20 μmol/liter) led rapidly to a blockage and reduced the likelihood that membrane depolarization triggers the opening of Na+ channels. The number of blank sweeps increased at the expense of the number of sweeps with activity. The fraction of activity sweeps with superpositions, indicating the simultaneous activation of two or more Na+ channels, also declined. As tested with amiodarone, the run length of blank sweeps is voltage- and time-dependent, analogous to the intensity of the block of macroscopic Na+ currents. Open time, open-time distribution, unitary current size and the tendency to reopen did not differ in unblocked cardiac Na+ channels (i.e. that channel fraction capable of opening in the presence of amiodarone or propafenone) from the respective control values obtained before superfusing the cardiocytes with these drugs. Apart from its blocking action, the propafenone derivative diprafenone exerted additionally a modifying effect and reduced mean open time by up to 45%. In contrast to the block, this reduction in conducting state proved insensitive to changes in holding potential, at least between −130 and −150 mV, the range tested. This means that block was attenuated on hyperpolarization whereas the reduction in open time persisted. It is concluded that, in the presence of these drugs, unblocked cardiac Na+ channels share a number of properties with normal Na+ channels in the absence of these drugs. Shortening of channel lifetime by diprafenone may be indicative of a channel modification brought about possibli by a receptor-mediated facilitation of the transition from the open to the inactivated state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 103 (1988), S. 283-291 
    ISSN: 1432-1424
    Keywords: slow Na+ inactivation ; Na+ channel kinetics ; reopening ; neonatal cardiocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Elementary Na+ currents through single cardiac Na+ channels were recorded at −50 mV in cell-attached patches from neonatal rat cardiocytes kept at holding potentials between −100 and −120 mV. Na+ channel activity may occur as burst-like, closely-timed repetitive openings with shut times close to 0.5–0.6 msec, indicating that an individual Na+ channel may reopen several times during step depolarization. A systematic quantiative analysis in 19 cell-attached patches showed that reopening may be quite differently pronounced. The majority, namely 16 patches, contained Na+ channels with a low tendency to reopen. This was evidenced from the average value for the mean number of openings per sequence, 2.5. Strikingly different results were obtained in a second group of three patches. Here, a mean number of openings per sequence of 3.42, 3.72, and 5.68 was found. Ensemble averages from the latter group of patches revealed macroscopic Na+ currents with a biexponential decay phase. Reconstructed Na+ currents from patches with poorly reopening Na+ channels were devoid of a slow decay component. This strongly suggests that reopening may be causally related to slow Na+ inactivation. Poorly pronounced reopening and, consequently, the lack of slow Na+ inactivation could be characteristic features of neonatal cardiac Na+ channels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 15 (1988), S. 289-292 
    ISSN: 1432-1017
    Keywords: Patch clamp ; cardiac Na+ channels ; channel modification ; heterogeneous population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Patch clamp recordings from neonatal cardiac Na+ channels treated with N-bromoacetamide (NBA, 5–50 x 10-mol/l) showed modified Na+ channel activity. By chemical removal of inactivation, repetitive openings with an increased life time and burst-like activity occurred. NBA-modified Na+ channels differ in life time and may attain either a slightly (mean open time 3.1±0.2 ms) or a strongly (mean open time 15.2±1.4 ms) prolonged open state. This strongly suggests a heterogeneous population of NBA-modified Na+ channels in newborn rat cardiocytes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Fluorine Chemistry 29 (1985), S. 203 
    ISSN: 0022-1139
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 37 (1989), S. 987-999 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 38 (1990), S. 383-394 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Thin Solid Films 199 (1991), S. 153-160 
    ISSN: 0040-6090
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 153 (1989), S. 327-333 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract It is not a trivial problem to imagine how a spherical high-pressure balloon with supersonic gas jets leaving from pores densely distributed on its surface can be influenced by an ambient gas flow. The relative motion of such a balloon can be controlled by a corresponding rearrangement of the gas outflow into an aspherical configuration. A similar problem is connected with stars driving a supersonic stellar wind and moving relative to the interstellar medium. As we shall show, the adapted circumstellar flow leads to an upwind-downwind pressure asymmetry balancing the momentum loss that is braking such stars. The opposite process — i.e., acceleration — may occur if luminous stars are closely associated and their wind systems interfere with each other. This should lead to a mutual repulsion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...