ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Spinach chloroplasts were exposed to35S-labeledp-(diazonium)-benzenesulfonic acid (DABS), a water soluble compound which does not penetrate lipophilie regions of membranes, and which is highly reactive toward amino acid functionagroups such as ε-amino, sulfhydryl, histidine, and tyrosine groups. Amino groups inl lipids can also form similar, stable covalent bonds by diazo coupling. Both chloroplast lipids and proteins were labeled with DABS, the total binding being about 1 DABS per 10 chlorophylls, depending on the reaction conditions. After diazo coupling and subsequent digitonin fractionation into photosystems I and II enriched fractions, it was observed that PS-I was more highly labeled than PS-III usually by a factor of 10 to 24 times (on a per chlorophyll basis). After digitonin isolation, however, the PS-II portion bound an amount of DABS similar to the PS-I binding, We interpret these data as consistent with the binary membrane hypothesis (Arntzen. Dilley and Crane (1969),J. Cell Biol. 43:16), which visualizes PS-I on the externa, “half” of a 90 Å grana membrane, and PS-II occurring on the interior “half” of thel membrane. The alternative explanation that PS-II and PS-I are arranged as a mosaic, and that the low DABS binding in PS-II is caused by burial of the diazo reactive groups in the interior of the proteins (and only exposed through the denaturing effect of digitonin) is not directly ruled out. However, this alternative is not consistent with the facts that: (a) most of the membrane proteins in PS-I and PS-II are identical in electrophoretic properties and therefore probably have similar overall structures; and (b) digitonin does not lead to appreciable denaturation of proteins, evidenced by the retention of PS-II electron transport activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Ammonium assimilation ; Excretion ; Anabaena azollae ; Azolla caroliniana ; Cyanobacteria ; Glutamine ; Glutamate formation ; Nitrogen fixation ; Symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Anabaena azollae was isolated fromAzolla caroliniana by the “gentle roller” method and differential centrifugation. Incubation of suchAnabaena preparations for 10 min with [13N]N2 resulted in the formation of four radioactive compounds; ammonium, glutamine, glutamate and alanine. Ammonium accounted for 66% of the total radioactivity recovered and 58% of the ammonium was in an extracellular fraction. Since essentially no extracellular13N-labeled organic compounds were found, it appears that ammonium is the compound most probably made available toAzolla during dinitrogen-dependent growth of the association. The kinetics of incorporation of exogenous13NH 4 + into glutamine and glutamate were characteristic of a precursor (glutamine)-product (glutamate) relationship and consistent with assimilation by the glutamine synthetase-glutamate synthase pathway. The results of experiments using the glutamine synthetase inhibitor, methionine sulfoximine, the glutamate synthase inhibitor, diazo-oxonorleucine, and increasing the ammonium concentration to greater than 1 mM, provided evidence for assimilation primarily by the glutamine synthetase-glutamate synthase pathway with little or no contribution from biosynthetic glutamate dehydrogenase. While showing that N2 fixation and NH 4 + assimilation were not tightly coupled metabolic processes in symbioticAnabaena, these results reflect a composite picture and do not indicate the extent to which ammonium assimilatory enzymes might be regulated in filaments associated with specific stages in theAzolla-Anabaena developmental profile.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 103 (1975), S. 113-122 
    ISSN: 1432-072X
    Keywords: Azolla ; Anabaena azollae ; Nitrogen-Fixation ; Acetylene Reduction ; Tetrazolium Salt Reduction ; Blue-Green Algae ; Symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The heterocystous blue-green alga, Anabaena azollae, was isolated from the leaf cavities of the water fern, Azolla caroliniana, where it occurs as an endophyte. The isolated alga was capable of light dependent CO2 fixation and acetylene reduction. Aerobic dark acetylene reduction occurred and was dependent upon endogenous substrates. Vegetative cells of the alga reduced nitro-blue tetrazolium chloride (NBT) to blue formazan. Heterocysts did not. Heterocysts reduced triphenyl tetrazolium chloride (TTC) to red formazan faster than vegetative cells. Reduction of TTC by both heterocysts and vegetative cells was much more rapid than has been reported for free-living heterocystous blue-green algae. Both NBT and TTC inhibited acetylene reduction and CO2 fixation. The inhibition by TTC was more closely correlated to the time of exposure of the cells to the reagent and to the amount of deposition per cell than to the number of cells containing red formazan. No differential inhibition of acetylene reduction versus CO2 fixation was observed. Autoradiography showed that CO2 fixation occurred only in vegetative cells. Heterocysts caused a darkening of nuclear emulsions (chemography). This observation has been employed by others as an index of reducing activity in these cells. DCMU inhibited the acetylene reducing capacity of alga isolated from dark pretreated fronds more rapidly and to a greater extent than that in alga isolated from light pretreated fronds. Ammonia in excess of 5 mM was required before any inhibition of acetylene reduction was observed under either aerobic or anaerobic conditions in the light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Biomass increase, C and N content, C2H2 reduction, percentage dry weight and chlorophyll a/b ratios were determined for clones of Azolla caroliniana Willd., A. filiculoides Lam., A. mexicana Presl., and A. pinnata R. Br. as a function of nutrient solution, pH, temperature, photoperiod, and light intensity in controlled environment studies. These studies were supplemented by a glasshouse study. Under a 16 h, 26°C day at a light intensity of 200 μmol m−2 s−1 and an 8 h, 19° C dark period, there was no significant difference in the growth rates of the individual species on the five nutrient solutions employed. Growth was comparable from pH 5 to pH 8, but decreased at pH 9. Using the same photoperiod and light intensity but constant growth temperatures of 15–40°C, at 5°C intervals, the individual species exhibited maximum growth, nitro-genase (N2ase) activity and N content at either 25° or 30°C. There was no difference in the temperature optima at pH 6 and pH 8. The tolerance of the individual species to elevated temperature was indicated to be A. mexicana〉 A. pinnata〉 A. caroliniana〉 A.filiculoides. At the optimum temperature, growth rates increased with increasing photoperiod at both pH 6 and pH 8 but N2ase activity was usually highest at a 16 h light period. At photon flux densities of 100, 200, 400 and 600 μmol m−2 s−1, during a 16 h light period and optimum growth temperature of the individual species, N2ase activity was saturated at less than 200 μmol m−2 s−1 and growth at 400 μmol m−2 s−1.No interacting effects of light and pH were noted for any species, nor were light intensities up to 1700 μmol m−2 s−1 detrimental to the growth rate or N content of any species in a 5 week glasshouse study with a natural 14.5 h light period and a constant temperature of 27.5°C. Using the optimum growth temperature, a 16 h light period, and a photon flux density of at least 400 μmol m−2 s−1, the Azolla species all doubled their biomass in 2 days or less and contained 5–6% N on a dry weight basis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 3 (1972), S. 345-359 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Cells ofRhodopseudomonas spheroides were depigmented by aerobic growth in the light and then transferred to 4% oxygen in the dark to induce pigment synthesis. Pigment synthesis and photochemical activity were measured fluorometrically. In conjunction with the fluorescence studies, thylakoid morphogenesis was followed by electron microscopy of thin sections of cells fixed during the repigmentation process. Both bacteriochlorophyli and the onset of photochemical activity were detected before distinct thylakoids were observed. Subsequent bacteriochlorophyll synthesis was associated with a gradual increase in the thylakoid content throughout the developmental process. The results obtained strongly indicate that initially the cytoplasmic membrane is modified by pigment incorporation, possibly at specific sites, and that the bacteriochlorophyll is photochemically active in the pigmented cytoplasmic membrane or in the early stages of invagination. Finally, in a confirmation of previous hypotheses, these studies provide evidence for the origin of the thylakoids as a protrusion and invagination of the cytoplasmic membrane. This is followed by constriction and subsequent proliferation and branching to form a continuous membrane system which gives rise to chromatophores upon cellular disruption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 137 (1991), S. 25-36 
    ISSN: 1573-5036
    Keywords: Anthoceros ; Azolla ; cycads ; Gunnera ; N2 fixation ; symbiotic Nostoc/Anabaena
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nostoc, a genus of filamentous, heterocystous, cyanobacteria, is widely distributed in the free-living state. It is also the most common phycobiont in N2-fixing lichens and occurs as the N2-fixing symbiont in a small and diverse group of green plants. These include several bryophyte genera (e.g. Anthoceros and Blasia), a pteridophyte genus (Azolla; while the symbiont is referred to asAnabaena azollae, it may be aNostoc spp.), a division of gymnosperms (the 10 cycad genera) and one angiosperm genus (Gunnera). In Gunnera the Nostoc apparently penetrates into the cells of the host. In the other associations Nostoc is extracellular but specific morphological modifications and/or structures of the host plant organs create an environment which fosters interaction and metabolite interchange. The individual group of Nostoc-green plant symbioses other than Azolla are summarized in regard to the current understanding of their establishment, perpetuation, and host-symbiont interaction. This includes available information on recognition and specificity, mode(s) of infection if applicable, and a synopsis of morphological modifications of the partners. The symbiosis withAzolla is then addressed separately with a more indepth account of the foregoing areas. In addition, the concept ofAzolla harboring a dominant, obiligately symbiotic Nostoc which has not been cultured as well as minor symbionts capable of free-living growth, the distinction between re-constituting and simply re-establishing the symbiosis, and current approaches to improving the symbiosis and to authenticating the establishment of new associations are considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1975-01-01
    Print ISSN: 0302-8933
    Electronic ISSN: 1432-072X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1986-01-01
    Print ISSN: 0031-9422
    Electronic ISSN: 1873-3700
    Topics: Biology , Chemistry and Pharmacology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 1991-11-01
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...