ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 78 (1993), S. 281-300 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 9 (1997), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The frequently observed parallelism between rifts and the preexisting orogenic fabric of continents suggests that the inherited tectonic fabric of the lithosphere influences the rupture of continents. We propose that the existence of a pervasive fabric in the lithospheric mantle induces an anisotropic strength in the lithosphere, that guides the propagation of continental rifts. Subcrustal mantle mechanical anisotropy is supported by (i) the anisotropic strength of olivine, (ii) an ubiquitous tectonic fabric in exposed mantle rocks, and (iii) measurements of seismic and electrical anisotropy. During major episodes of continent assembly, a pervasive deformation of the lithosphere induces a lattice-preferred orientation of olivine in mantle rocks. Later on, this crystallographic fabric is ‘frozen-in’ and represents the main source of shear wave splitting. This olivine fabric may entail a mechanical anisotropy in the lithospheric mantle. During subsequent tectonic events, especially during rifting, mechanical anisotropy may control the tectonic behaviour of the lithosphere
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-08
    Description: The Piton de la Fournaise basaltic volcano, on La Réunion Island in the western Indian Ocean, is one of the most active volcanoes in the world. This volcano is classically considered as the surface expression of an upwelling mantle plume and its activity is continuously monitored, providing detailed information on its superficial dynamics and on the edifice structure. Deeper crustal and upper mantle structure under La Réunion Island is surprisingly poorly constrained, motivating this study. We used receiver function techniques to determine a shear wave velocity profile through the crust and uppermost mantle beneath La Réunion, but also at other seismic stations located on the hotspot track, to investigate the plume and lithosphere interaction and its evolution through time. Receiver functions (RFs) were computed at permanent broad-band seismic stations from the GEOSCOPE network (on La Réunion and Rodrigues), at IRIS stations MRIV and DGAR installed on Mauritius and Diego Garcia islands, and at the GEOFON stations KAAM and HMDM on the Maldives. We performed non-linear inversions of RFs through modelling of P -to- S conversions at various crustal and upper mantle interfaces. Joint inversion of RF and surface wave dispersion data suggests a much deeper Mohorovičić discontinuity (Moho) beneath Mauritius (~21 km) compared to La Réunion (~12 km). A magmatic underplated body may be present under La Réunion as a thin layer (≤3 km thick), as suggested by a previous seismic refraction study, and as a much thicker layer beneath other stations located on the hotspot track, suggesting that underplating is an important process resulting from the plume–lithosphere interaction. We find evidence for a strikingly low velocity layer starting at about 33 km depth beneath La Réunion that we interpret as a zone of partial melt beneath the active volcano. We finally observe low velocities below 70 km beneath La Réunion and below 50 km beneath Mauritius that could represent the base of the oceanic lithosphere.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-28
    Description: Ocean waves activity is a major source of microvibrations that travel through the solid Earth, known as microseismic noise and recorded worldwide by broadband seismometers. Analysis of microseismic noise in continuous seismic records can be used to investigate noise sources in the oceans such as storms, and their variations in space and time, making possible the regional and global-scale monitoring of the wave climate. In order to complete the knowledge of the Atlantic and Pacific oceans microseismic noise sources, we analyse 1 yr of continuous data recorded by permanent seismic stations located in the Indian Ocean basin. We primarily focus on secondary microseisms (SM) that are dominated by Rayleigh waves between 6 and 11 s of period. Continuous polarization analyses in this frequency band at 15 individual seismic stations allow us to quantify the number of polarized signal corresponding to Rayleigh waves, and to retrieve their backazimuths ( BAZ ) in the time–frequency domain. We observe clear seasonal variations in the number of polarized signals and in their frequencies, but not in their BAZ that consistently point towards the Southern part of the basin throughout the year. This property is very peculiar to the Indian Ocean that is closed on its Northern side, and therefore not affected by large ocean storms during Northern Hemisphere winters. We show that the noise amplitude seasonal variations and the backazimuth directions are consistent with the source areas computed from ocean wave models.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-17
    Description: The Terre Adélie and George V Land (East Antarctica) represent key areas for understanding tectonic relationships between terranes forming the Neoarchean-Palaeoproterozoic Terre Adélie Craton (TAC) and the neighbouring lithospheric blocks, together with the nature of its boundary. This region that represents the eastern border of the TAC is limited on its eastern side by the Mertz shear zone (MSZ) separating more recent Palaeozoic units from the craton. The MSZ, that recorded dextral strike-slip movement at 1.7 and 1.5 Ga, is likely correlated with the Kalinjala or Coorong shear zone in South Australia, east of the Gawler Craton and may therefore represent a frozen lithospheric-scale structure. In order to investigate the lithospheric structure of the TAC and the MSZ, we deployed from 2009 October to 2011 October four temporary seismic stations, which sampled the various lithospheric units of the TAC and of the neighbouring Palaeozoic block, together with the MSZ. We used receiver function method to deduce Moho depths and seismic anisotropy technique to infer the upper mantle deformation. Results from receiver functions analysis reveal Moho at 40–44 km depth beneath the TAC, at 36 km under the MSZ and at 28 km beneath the eastern Palaeozoic domain. The MSZ therefore delimits two crustal blocks of different thicknesses with a vertical offset of the Moho of 12 km. Seismic anisotropy deduced from SKS splitting at stations on the TAC shows fast polarisation directions () trending E–W, that is, parallel to the continental margin, and delay times ( t ) ranging from 0.8 to 1.6 s. These results are similar to the splitting parameters observed at the permanent GEOSCOPE Dumont D'Urville station (DRV: 95°N, t 1.1 s) located in the Palaeoproterozoic domain of TAC. On the MSZ, the small number of good quality measurements limits the investigation of the deep signature of the shear zone. However, the station in the Palaeozoic domain shows trending N60°E, which is significantly different to the trending measurements from stations on the TAC, suggesting that the MSZ may also represent a major frontier between the Neoarchean-Palaeoproterozoic and Palaeozoic terranes.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-04
    Description: Ocean wave activity excites seismic waves that propagate through the solid earth, known as microseisms, which, once recorded on oceanic islands, can be used to analyse the swell. Here, we analyse the microseismic noise recorded in different period ranges by the permanent seismic station RER on La Réunion Island and by a temporary network of 10 broad-band seismic stations deployed on the island to analyse extreme swell events. We perform a comparative analysis of cyclonic and austral swell events by analysing not only the primary (PM, ~10–20 s period) and secondary (SM, ~3–10 s) microseisms but also the long-period secondary microseisms (LPSMs, ~ 7–10 s), which may result from the interaction between incident ocean waves and the reflected waves off the coast. We compare the microseismic observations with buoy data when available and with hindcasts from numerical ocean wave models. We show that each cyclone is characterized by its own individual signature in the SM, which depends not only on its distance and intensity but also on its dynamics and trajectory. Thus, the SM contains relevant information for cyclone detection and monitoring. Analysing the PM and the LPSM, and comparing it to direct buoy observations and/or wave numerical models allows characterizing the local impact of the swell with the island in terms of amplitude, period, and sometimes, direction of propagation, making possible to use a seismic station as an ocean wave gauge. The microseisms, which link the atmosphere, the ocean and the solid Earth, can thus provide valuable observations on extreme swell events, in addition to oceanic and meteorological data.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-12
    Description: We present two independent, automated methods for estimating the absolute horizontal misorientation of seismic sensors. We apply both methods to 44 free-fall ocean-bottom seismometers (OBSs) of the RHUM-RUM experiment ( http://www.rhum-rum.net/ ). The techniques measure the 3-D directions of particle motion of (1) P -waves and (2) Rayleigh waves of earthquake recordings. For P -waves, we used a principal component analysis to determine the directions of particle motions (polarizations) in multiple frequency passbands. We correct for polarization deviations due to seismic anisotropy and dipping discontinuities using a simple fit equation, which yields significantly more accurate OBS orientations. For Rayleigh waves, we evaluated the degree of elliptical polarization in the vertical plane in the time and frequency domain. The results obtained for the RHUM-RUM OBS stations differed, on average, by 3.1° and 3.7° between the methods, using circular mean and median statistics, which is within the methods’ estimate uncertainties. Using P -waves, we obtained orientation estimates for 31 ocean-bottom seismometers with an average uncertainty (95 per cent confidence interval) of 11° per station. For 7 of these OBS, data coverage was sufficient to correct polarization measurements for underlying seismic anisotropy and dipping discontinuities, improving their average orientation uncertainty from 11° to 6° per station. Using Rayleigh waves, we obtained misorientation estimates for 40 OBS, with an average uncertainty of 16° per station. The good agreement of results obtained using the two methods indicates that they should also be useful for detecting misorientations of terrestrial seismic stations.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Breakthroughs in understanding the structure and dynamics of our planet will strongly depend upon instrumenting deep oceans. Progress has been made these last decades in ocean-bottom seismic observations, but ocean-bottom seismometer (OBS) temporary deployments are still challenging and face set-up limitations. Launched from oceanographic vessels, OBSs fall freely and may slightly drift laterally, dragged by currents. Therefore, their actual orientation and location on the landing sites are hard to assess precisely. Numerous techniques have been developed to retrieve this key information, but most of them are costly, time-consuming or inaccurate. In this work, we show how ship noise can be used as an acoustic source of opportunity to retrieve both the orientation and the location of OBSs on the ocean floor. To retrieve the OBS orientation, we developed a first method based on a combination of seismic and pressure data through the use of the acoustic intensity. This latter can be used to quantify the OBS orientation from the ship noise direction of arrival (DOA), which can then be compared with known ship trajectories obtained from the automatic identification system (AIS). To accurately relocate OBSs, we also developed a second method based on the hydrophone data which computes distances of acoustical sources by measuring time differences of arrival (TDOA) between direct and reverberated phases. The OBS location is then retrieved by fitting measured ship distances with known ship trajectories. In this study, a full network of OBSs deployed in the SW Indian Ocean was reoriented and a test station was relocated. We demonstrate that our new methods may quantify the OBS orientation with an accuracy of about one degree, and its location with an accuracy of a few tens of metres, depending on the number of ships used in the analysis.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-11-14
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-09-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...