ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Call number: M 09.0004
    Description / Table of Contents: Gives an assemblage of microscopic slides of wood anatomy and of the respective species in nature and demonstrates the reaction of stem anatomy to environments in which plants form woody stems. This atlas provides an insight into the evolution of wood, to the variation of wood anatomy in response to climate and disturbances. Contents: The Evolution of Plant Stems in the Earth's History.- The Structure of the Cormus.- Secondary Growth: Advantages and Risks.- Modification of the Stem Structure.- Modification of the Xylem Within a Plant.- Modification of Organs. Wood Structural Variability.- Modifications Caused by Weather and Climate.- Modifications Caused by Extreme Growth Factors.- Decay of Dead Wood.- Microscopical Preparation.
    Type of Medium: Monograph available for loan
    Pages: X, 229 S. überw. farb. Ill., Kt.
    ISBN: 9783540325239 , 978-3-540-32523-9
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer-Verl.
    Associated volumes
    Call number: PIK N 531-91-0112
    In: Ecological studies
    Type of Medium: Monograph available for loan
    Pages: XII, 435 S. : Ill., 141 graph. Darst.
    ISBN: 354017138X , 0-387-17138-X
    Series Statement: Ecological studies 61
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Chichester [u.a.] : Wiley
    Call number: PIK N 531-01-0124
    Type of Medium: Monograph available for loan
    Pages: 268 p.
    ISBN: 0471929263
    Series Statement: SCOPE 45
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer-Verl.
    Associated volumes
    Call number: PIK N 531-93-0245
    In: Ecological studies
    Type of Medium: Monograph available for loan
    Pages: 525 p., 116 figure, 7 color plates and 22 tables
    ISBN: 3540558047 , 0-387-55804-7
    Series Statement: Ecological studies
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer-Verlag
    Call number: N 531-93-0245
    Type of Medium: Monograph available for loan
    Pages: 525 p., 116 figure, 7 color plates and 22 tables
    ISBN: 3540558047 , 0-387-55804-7
    Series Statement: Ecological studies 99
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer-Verl.
    Associated volumes
    Call number: PIK N 531-94-0168
    In: Ecological studies
    Type of Medium: Monograph available for loan
    Pages: 525 p.
    ISBN: 3540581030 , 0-387-58103-0
    Series Statement: Ecological studies; 99
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: M 11.0226
    Description / Table of Contents: This work, published in two volumes, contains descriptions of the wood and bark anatomies of 3000 dicotyledonous plants of 120 families, highlighting the anatomical and phylogenetic diversity of dicotyledonous plants of the Northern Hemisphere.
    Pages: Vol. 1 -
    Note: Online-Ausg. ---〉 Atlas of Stem Anatomy in Herbs, Shrubs and Trees , Erscheinungsjahr in Vorlageform:2011-
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: 9783662562338 (e-book)
    Description / Table of Contents: This completely updated and revised second edition provides a unique and up-to-date treatment of all aspects of plant ecology, making it an ideal textbook and reference work for students, researchers and practitioners. More than 500 high-quality images and drawings, mostly in colour, aid readers’ understanding of various key topics, while the clear structure and straightforward style make it user friendly and particularly useful for students. Written by leading experts, it offers authoritative information, including relevant references. While Plant Ecology primarily addresses graduate students in biology and ecology, it is also a valuable resource for post-graduate students and researchers in botany, environmental sciences and landscape ecology, as well as all those whose study or work touches on agriculture, forestry, land use, and landscape management. Key Topics: - Molecular ecophysiology (molecular stress physiology: light, temperature, oxygen deficiency, water deficit (drought), unfavorable soil mineral conditions, biotic stress) - Physiological and biophysical plant ecology (ecophysiology of plants: thermal balance, water, nutrient, carbon relations) - Ecosystem ecology (characteristics of ecosystems, approaches how to study and how to model terrestrial ecosystems, biogeochemical fluxes in terrestrial ecosystems) - Community ecology and biological diversity (development of plant communities in time and space, interactions between plants and plant communities with the abiotic and the biotic environment, biodiversity and ecosystem functioning) - Global ecology (global biogeochemical cycles, Dynamic Global Vegetation Models, global change and terrestrial ecosystems)
    Type of Medium: 12
    Pages: 1 Online-Ressource (XXI, 926 Seiten) , Illustrationen, Diagramme, Karten
    Edition: Second edition
    ISBN: 9783662562338 , 978-3-662-56233-8
    Language: English
    Note: Contents 1 Introduction References Part I Molecular Stress Physiology 2 General Themes of Molecular Stress Physiology 2.1 Definitions and Concepts 2.1.1 Stress 2.1.2 Quantification of Stress 2.1.3 Escape–Resistance–Avoidance–Tolerance 2.1.4 Stress Responses–Acclimation–Adaptation 2.1.5 Filters Determining Species Distribution 2.2 Activation of Stress Tolerance and Avoidance Mechanisms 2.2.1 Stress Sensing and Signal Transduction 2.2.2 Transcriptional Control 2.2.3 Oxidative Stress 2.2.4 Long-Distance Stress Signalling 2.2.5 The Model System Arabidopsis thaliana 2.3 Stress and Growth Regulation 2.4 Molecular Basis of Escape and Anticipation of Stress 2.4.1 Circadian Rhythms 2.4.2 Anticipation of Seasonal Changes in Environmental Conditions 2.4.3 Developmental Switches Triggered by Favourable Conditions 2.4.4 Trans-Generational Stress Memory Summary References 3 Light 3.1 The Dual Significance of Light 3.2 Visible Light 3.2.1 Avoidance of Light Stress and Permanent or Dynamic Acclimation 3.2.2 Overexcitation and Damage to Photosynthetic Membranes. 3.2.3 Flexible Acclimation to Changes in Light Intensity 3.2.4 Continuous Light 3.2.5 Light Triggers Plant Adaptation and Acclimation to the Environment 3.3 UV-B Radiation 3.3.1 Ranges of Ultraviolet Radiation and Biological Activity 3.3.2 Ultraviolet-B Damage and Repair Mechanisms 3.3.3 Avoidance of Ultraviolet-B-Induced Stress 3.3.4 Ultraviolet-B Perception and Signalling 3.3.5 Crosstalk Between Ultraviolet-B and Visible Light Responses Summary References 4 Temperature 4.1 The Temperature Challenge 4.1.1 Temperature Dependence of Life 4.1.2 Plants as Poikilothermic Organisms 4.1.3 Variations in Temperature Range 4.1.4 Strategies to Cope with Temperature Fluctuations and Temperature Extremes 4.2 Cold Acclimation and Freezing Tolerance 4.2.1 Adjustment of Membrane Fluidity 4.2.2 Prevention of Photoinhibition 4.2.3 Cryoprotective Proteins 4.2.4 Control of Ice Formation 4.2.5 Signalling Networks Involved in Cold Acclimation 4.2.6 Freezing Avoidance and Freezing Tolerance in Tropical High Mountain Plants 4.3 Heat Stress 4.3.1 Heat Stress Avoidance 4.3.2 Acquired Thermotolerance 4.3.3 The Heat Shock Response 4.4 Temperature Sensing 4.4.1 Sensing of Extreme Temperatures 4.4.2 Sensing of Ambient Temperature Changes Summary References 5 Oxygen Deficiency 5.1 Conditions of Flooded Soil 5.2 Hypoxia-Induced Damage: Energy Metabolism of Plants Under Oxygen Deficiency 5.3 Natural Variation in the Ability to Endure Inundation by Water 5.4 Adaptations to Flooding-Prone Habitats 5.4.1 Anatomical–Morphological Adaptations and Modifications 5.4.2 Biochemical Modifications 5.5 Sensing of Flooding and Ensuing Signal Transduction 5.5.1 Ethylene Signal Transduction 5.5.2 Oxygen Sensing 5.6 Regulation of Avoidance and Tolerance Strategies Summary References 6 Water Deficiency (Drought) 6.1 The Properties of Water 6.2 Water Acquisition and Movement: Cellular Aspects 6.2.1 The Water Potential 6.2.2 Facilitation of Intercellular and Intracellular Water Flow: Aquaporins 6.3 Drought Stress Responses: Avoidance and Tolerance 6.3.1 Control of the Osmotic Potential 6.3.2 Protective Proteins 6.3.3 Regulation of the Stomatal Aperture 6.4 Acclimation of Growth 6.4.1 Inhibition of Shoot Growth 6.4.2 Stimulation of Root Growth 6.5 Sensing of Water Status and Signal Transduction 6.5.1 Sensing of Water Status 6.5.2 ABA Signal Transduction 6.5.3 ABA-Independent Signalling 6.6 Photosynthesis Variants with Improved Water Use Efficiency 6.6.1 C4 Photosynthesis 6.6.2 Evolution of C 4 Photosynthesis 6.6.3 Crassulacean Acid Metabolism 6.6.4 Evolution of Crassulacean Acid Metabolism Photosynthesis Summary References 7 Adverse Soil Mineral Availability 7.1 Mineral Nutrients 7.2 The Mineral Nutrition Challenge 7.2.1 Elements in the Soil 7.2.2 Element Toxicity 7.3 Nutrient Acquisition and Responses to Nutrient Scarcity 7.3.1 Modulation of Nutrient Availability 7.3.2 Cellular Ion Transport Mechanisms 7.3.3 Modulation of Nutrient Uptake in Response to Deficiency 7.3.4 Intracellular Transport and Cellular Aspects of Long-Distance Transport 7.3.5 Plasticity of Root Architecture and Responses to Nutrient Deficiency 7.3.6 Sensing of Nutrient Availability and Nutrient Status . 7.4 Nutrient Acquisition Symbioses 7.4.1 Mycorrhizae 7.4.2 Nitrogen Fixation 7.4.3 The Common Sym Pathway 7.5 Responses to Element Toxicity and Tolerance Mechanisms 7.5.1 Essential Metal Toxicity and Tolerance 7.5.2 Metal Hyperaccumulators as Models for Adaptation to Extreme Environments 7.5.3 Sodium Toxicity 7.5.4 Aluminium Toxicity and Tolerance 7.5.5 Non-Essential Toxic Metals Summary References 8 Biotic Stress 8.1 Plant Disease Caused by Pathogens 8.1.1 Types of Pathogens: Viruses, Bacteria, Fungi, Oomycetes and Nematodes 8.1.2 Pathogenicity Mechanisms 8.2 Plant Defences Against Microbial Pathogens and Viruses 8.2.1 Preformed Defences Against Bacteria, Fungi and Oomycetes 8.2.2 Inducible Local Defences 8.2.3 Inducible Systemic Resistance 8.2.4 Defence Against Viruses via Gene Silencing 8.3 Herbivory 8.3.1 Constitutive Defences 8.3.2 Inducible Defences Against Herbivores 8.3.3 How Plant–Herbivore Interactions Drive Genetic Diversity 8.4 Parasitic Plants 8.5 Allelopathy Summary References Part II Physiological and Biophysical Plant Ecology 9 Thermal Balance of Plants and Plant Communities 9.1 Energy Balance of the Atmospheric Boundary Layer 9.2 Microclimate Near the Ground Surface 9.2.1 Daily Changes in Temperature Near the Ground 9.2.2 Modification of Environmental Radiation and Temperature by Abiotic Factors 9.2.3 Modification of the Radiation Budget and Temperature by Biotic Factors 9.3 Energy Balance of Leaves 9.4 Acclimation and Adaptation to Temperature Extremes 9.4.1 Acclimation and Adaptation to High Temperatures 9.4.2 Acclimation and Adaptation to Low Temperatures Summary References 10 Water Relations 10.1 Water as an Environmental Factor 10.1.1 Water Use by Plants and Animals 10.1.2 Availability of Water on Earth 10.1.3 Drivers of Water Flow Between the Soil and the Atmosphere 10.2 Water Transport from the Soil to the Plant 10.2.1 Water Uptake 10.2.2 Xylem Water Transport 10.2.3 Phloem Water Transport 10.3 Transpiration 10.3.1 Stomatal Responses to Plant-Internal Factors 10.3.2 Stomatal Responses to Environmental Factors Summary References 11 Nutrient Relations 11.1 Availability of Soil Nutrients and Ion Use 11.1.1 Plant Nutrients 11.1.2 Availability of Nutrients in Soil 11.1.3 General Aspects of Plant Nutrition 11.1.4 Nutrient Deficiency and Excess 11.2 Nitrogen Nutrition 11.2.1 Nitrogen in Plant Metabolism 11.2.2 Nitrogen Uptake and Nutrition 11.2.3 Nitrogen Requirements for Growth 11.2.4 Nitrogen Storage 11.2.5 Insectivorous Plants 11.2.6 Nitrogen Deficiency and Excess 11.3 Sulphur Nutrition 11.3.1 Sulphur in Plant Metabolism 11.3.2 Sulphur Uptake and Plant Requirements 11.3.3 Indicators of Sulphur Deficiency and Excess 11.4 Phosphate Nutrition 11.4.1 Phosphorus in Plant Metabolism 11.4.2 Phosphate Uptake and Plant Requirements 11.4.3 Indicators of Phosphorus Deficiency and Excess 11.5 Alkaline Cation Nutrition 11.5.1 Magnesium 11.5.2 Calcium 11.5.3 Potassium Summary References 12 Carbon Relations 12.1 Photosynthetic CO2 Uptake: Physiological and Physical Basis 12.1.1 Photosynthesis as a Diffusion Process 12.1.2 Evolution of C 3, C4 and Crassulacean Acid Metabolism Plant Species 12.2 Photosynthesis Models and Calculation of 13C/12C Fluxes (Contribution by A. Arneth) 12.2.1 RubisCO-Limited or RuBP-Saturated Rate (Av) 12.2.2 RuBP Regeneration–Dependent and Electron Transport–Limiting Rate (Aj) 12.2.3 Supply of CO 2 Through Stomata 12.2.4 13C/12C Discrimination 12.3 Specific Leaf Area, Nitrogen Concentrations and Photosynthetic Capacity 12.3.1 Specific Leaf Area 12.3.2 Maximum Rates of CO2 Assimilation 12.4 Response of Photosynthesis to Environmental Variables 12.4.1 Light Response of CO 2 Assimilation 12.4.2 Temperature Response of CO2 Assimilation 12.4.3 Relative Air Humidi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Berlin : Spektrum
    Call number: PIK N 630-02-0371
    Type of Medium: Monograph available for loan
    Pages: 850 S.
    ISBN: 382740987x
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: PIK N 531-01-0416 ; AWI G1-02-0031
    Type of Medium: Monograph available for loan
    Pages: XVI, 416 Seiten , Illustrationen
    ISBN: 0126312605
    Language: English
    Note: Contents: Contributors. - Foreword by Paul J. Crutzen. - Preface by David Schimel. - Introduction. - 1 Uncertainties of Global Biogeochemical Predictions / E. D. Schulze, D. S. S. Schimel. - 1.1 Introduction. - 1.2 The IGBP Transect Approach. - 1.2.1 The Patagonian Transect. - 1.2.2 The Australian Transect. - 1.2.3 The European Transect. - 1.3 Variability in Processes. - 1.4 Biome Approach and Functional Types. - 1.5 New Approaches to Functional Diversity. - 1.6 Conclusions. - References. - 2 Uncertainties of Global Climate Predictions / L. Bengtsson. - 2.1 Introduction. - 2.2 Observational Evidence. - 2.3 Physical Rationale. - 2.3.1 Stochastic Forcing. - 2.3.2 Solar irradiation Changes. - 2.3.3 Volcanic Effects. - 2.3.4 Anthropogenic Effects. - 2.4 Response to Forcing of the Climate System. - 2.5 Results from Climate Change Prediction Experiments. - 2.6 Summary and Conclusions. - References. - 3 Uncertainties in the Atmospheric Chemical System / G. P. Brasseur, E. A. H. Holland. - 3.1 Introduction. - 3.2 Synthetic View of Chemical Processes in the Troposphere. - 3.3 The IMAGES Model. - 3.4 Changes in the Chemical Composition of the Global Troposphere. - 3.5 Concluding Remarks. - References. - 4 Inferring Biogeochemical Sources and Sinks from Atmospheric Concentrations: General Consideration and Applications in Vegetation Canopies / M. Raupach. - 4.1 Introduction. - 4.2 Scalar and Isotopic Molar Balances. - 4.2.1 General Principles. - 4.2.2 Single-Point Eulerian Equations. - 4.2.3 Source Terms for CO2. - 4.2.4 Single-Point Lagrangian Equations. - 4.3 Inverse Methods for Inferring Scalar Sources and Sinks in Canopies. - 4.3.1 General Principles. - 4.3.2 Localized Near Field Theory. - 4.3.3 The Dispersion Matrix. - 4.3.4 Turbulent Velocity Field. - 4.3.5 Solutions for Forward, Inverse and Implicit Problems. - 4.3.6 Field Tests. - 4.4 Inverse Methods and Isotopes in Canopies. - 4.4.1 Path Integrals and Keeling Plots. - 4.4.2 Inverse Lagrangian Analysis of Isotopic Composition. - 4.5 Summary and Conclusions. - Appendix A. - Appendix B. - References. - 5 Biogeophysical Feedbacks and the Dynamics of Climate / M. Claussen. - 5.1 Introduction. - 5.2 Synergisms. - 5.2.1 High Northern Latitudes. - 5.2.2 Subtropics. - 5.3 Multiple Equilibria. - 5.4 Transient Interaction. - 5.5 Perspectives. - References. - 6 Land-Ocean-Atmosphere Interactions and Monsoon Climate Change: A Paleo-Perspective / J. E. Kutzbach, Michael T. Coe, S. P. Harrison and M. T. Coe. - 6.1 Introduction. - 6.2 Response of the Monsoon to Orbital Forcing. - 6.3 Ocean Feedbacks on the Monsoon. - 6.4 Land-Surface Feedbacks on the Monsoon. - 6.5 Synergies between the Land, Ocean and Atmosphere. - 6.6 The Role of Climate Variability. - 6.7 Final Remarks. - References. - 7 Paleobiogeochemistry / I. C. Prentice, D. Raynaud. - 7.1 Introduction. - 7.2 Methane. - 7.3 Carbon Dioxide. - 7.4 Mineral Dust Aerosol. - 7.5 Scientific Challenges Posed by the Ice-Core Records. - 7.5.1 Methane. - 7.5.2 Carbon Dioxide. - 7.5.3 Mineral Dust Aerosol. - 7.6 Towards an Integrated Research Strategy for Palaeobiogeochemistry. - References. - 8 Should Phosphorus Availability Be Constraining Moist Tropical Forest Responses to Increasing CO2 Concentrations / J. Lloyd, M. I. Bird, E. M. Veenendaal and B. Kruijt. - 8.1 Introduction. - 8.2 Phosphorus in the Soils of the Moist Tropics. - 8.2.1 Soil Organic Phosphorus. - 8.2.2 Soil Inorganic Phosphorus. - 8.2.3 Soil Carbon/Phosphorus Interactions. - 8.3 States and Fluxes of Phosphorus in Moist Tropical Forests. - 8.3.1 Inputs and Losses of Phosphorus Through Rainfall, Dry Deposition and Weathering: Losses Via Leaching. - 8.3.2 Internal Phosphorus Flows in Moist Tropical Forests. - 8.3.3 Mechanisms for Enhanced Phosphorus Uptake in Low P Soils. - 8.4 Linking the Phosphorus and Carbon Cycles. - 8.4.1 To What Extent Does Phosphorus Availability Really Limit Moist Tropical Forest Productivity?. - 8.4.2 Tropical Plant Responses to Increases in Atmospheric CO2 Concentrations. - 8.4.3 Using a Simple Model to Examine CO2/Phosphorus Interactions in Tropical Forests. - References. - 9 Trees in Grasslands: Biogeochemical Consequences of Woody Plant Expansion / S. Archer, T. W. Boutton and K. A. Hibbard. - 9.1 Introduction. - 9.2 Woody Plant Encroachment in Grasslands and Savannas. - 9.3 The La Copita Case Study. - 9.3.1 Biogeographical and Historal Context. - 9.3.2 Herbaceous Retrogression and Soil Carbon Losses. - 9.3.3 Woody Plant Encroachment and Ecosystem Biogeochemistry. - 9.4 Degradation: Ecological Versus Socioeconomic. - 9.5 Implications for Ecosystem and Natural Resources Management. - 9.6 Summary. - References. - 10 Biogeochemistry in the Arctic: Patterns, Processes and Controls / S. Jonasson, F.S. Chapin, III and G. R. Shaver. - 10.1 Introduction. - 10.2 Tundra Organic Matter. - 10.2.1 Distribution of Organic Matter. - 10.2.2 Patterns and Controls of Organic Matter Turnover between Ecosystem Types. - 10.3 Tundra Nutrients. - 10.3.1 Nutrient Distribution and Controls of Nutrient Cycling. - 10.3.2 Nutrient Mineralization and Plant Nutrient Uptake. - 10.3.3 Are there Unaccounted Plant Sources of Limiting Nutrients?. - 10.4 Biogeochemical Responses to Experimental Ecosystem Manipulations. - 10.4.1 Applicability of Experimental Manipulations. - 10.4.2 Responses to Water Applications. - 10.4.3 Response to Nutrient Addition and Warming. - 10.4.4 Responses in Ecosystem Carbon Balance. - 10.5 Summary. - References. - 11 Evaporation in the Boreal Zone During Summer - Physics and Vegetation / F. M. Kelliher, I. Lloyd, C. Rebmann, C. Wirth and E. D. Schulze, D. D. Baldocchi. - 11.1 Introduction. - 11.2 Climate and Soil Water. - 11.3 Evaporation Theory. - 11.4 Evaporation During Summer and Rainfall. - 11.5 Forest Evaporation, Tree Life Form and Nitrogen. - 11.6 Conclusions. - References. - 12 Past and Future Forest Response to Rapid Climate Change / M.B. Davis. - 12.1 Introduction. - 12.2 Long-Distance Dispersal. - 12.3 Estimating Jump Distances. - 12.4 Interactions with Resident Vegetation - Constraints on Establishment. - 12.5 Interactions with Resident Vegetation - Competition for Light and Resulting Constraints on Population Growth. - 12.6 Conclusions. - References. - 13 Biogeochemical Models: Implicit vs. Explicit Microbiology / J. Schimel. - 13.1 Introduction. - 13.2 Microbiology in Biogeochemical Models. - 13.3 Dealing with Microbial Diversity in Models. - 13.4 Kinetic Effects of Microbial Population Size. - 13.5 Microbial Recovery from Stress. - 13.6 Conclusions. - References. - 14 The Global Soil Organic Carbon Pool / M. I. Bird, H. Santruckova, J. Lloyd and E. M. Veenendaal. - 14.1 Introduction: the Soil Carbon Pool and Global Change. - 14.2 Factors Affecting the Distribution of Soil Organic Carbon. - 14.3 Global Variations in the SOC Pool. - 14.4 The Limitations of Available Observational SOC Data. - 14.5 A Stratified Sampling Approach. - 14.6 Conclusions: Sandworld and Clayworld. - References. - 15 Plant Compounds and Their Turnover and Stability as Soil Organic Matter / G. Gleixner, C. Czimczik, C. Kramer, B. M. Lühker and M. W. I. Schmidt. - 15.1 Introduction. - 15.2 Pathways of Soil Organic Matter Formation. - 15.2.1 Formation and Decomposition of Biomass. - 15.2.2 The Influence of Environmental Conditions on SOM Formation. - 15.2.3 For
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...