ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018
    Description: We present a Holocene record of floristic diversity and environmental change for the central Varanger Peninsula, Finnmark, based on ancient DNA extracted from the sediments of a small lake (sedaDNA). The record covers the period c. 10 700 to 3300 cal. a BP and is complemented by pollen data. Measures of species richness, sample evenness and beta diversity were calculated based on sedaDNA sampling intervals and 1000‐year time windows. We identified 101 vascular plant and 17 bryophyte taxa, a high proportion (86%) of which are still growing within the region today. The high species richness (〉60 taxa) observed in the Early Holocene, including representatives from all important plant functional groups, shows that modern shrub‐tundra communities, and much of their species complement, were in place as early as c. 10 700 cal. a BP. We infer that postglacial colonization of the area occurred prior to the full Holocene, during the Pleistocene‐Holocene transition, Younger Dryas stadial or earlier. Abundant DNA of the extra‐limital aquatic plant Callitriche hermaphroditica suggests it expanded its range northward between c. 10 200 and 9600 cal. a BP, when summers were warmer than present. High values of Pinus DNA occur throughout the record, but we cannot say with certainty if they represent prior local presence; however, pollen influx values 〉500 grains cm−2 a−1 between c. 8000 and 7300 cal. a BP strongly suggest the presence of pine woodland during this period. As the site lies beyond the modern tree limit of pine, it is likely that this expansion also reflects a response to warmer Early Holocene summers.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: The Holocene, Volume 28, Issue 12, Page 2006-2016, December 2018. 〈br/〉
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: The Holocene, Ahead of Print. 〈br/〉
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-20
    Description: We present a record of peatland development in relation to climate changes and human activities from the Palomaa mire, a remote site in northern Finland. We used fine-resolution and continuous sampling to analyse several proxies including pollen (for vegetation on and around the mire), testate amoebae (TA; for mire-wetness changes), oxygen and carbon isotopes from Sphagnum cellulose (δ 18 O and δ 13 C; for humidity and temperature changes), peat-accumulation rates and peat-colour changes. In spite of an excellent accumulation model (30 14 C dates and estimated standard deviation of sample ages 〈1 year in the most recent part), the potential to determine cause–effect (or lead–lag) relationships between environmental changes and biotic responses is limited by proxy-specific incorporation processes below the actively growing Sphagnum surface. Nevertheless, what emerges is that mire development was closely related to water-table changes rather than to summer temperature and that water-table decreases were associated with increasing peat-accumulation rates and more abundant mire vegetation. A rapid fen-to-bog transition occurred within a few years around AD 1960 when the water table decreased beyond the historical minimum, supporting the notion that mires can rapidly shift into bogs in response to allogenic factors. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-03
    Description: Uncertainty about the geological processes that deposited syngenetically frozen ice-rich silt ( yedoma ) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice-age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the ‘Yedoma Suite’, at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold-climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho- and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near-surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi- to polymodal, with a primary mode of about 41 μm (coarse silt) and subsidiary modes are 0.3–0.7 μm (very fine clay to fine clay), 3–5 μm (coarse clay to very fine silt), 8–16 μm (fine silt) and 150–350 μm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in-situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre-Holocene accelerator mass spectrometry (AMS) 14 C ages, mostly from in-situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14 C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14 C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol ‘complexes’ are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith-palaeosol sequence accreted incrementally upwards on a vegetated palaeo-land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14 C BP characteristically have frequencies of 20–60 per cent tree/shrub pollen (mainly Betula and Pinus ) and 20–60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000–33 000 14 C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris . The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long-distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial-lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess-palaeosol sequence and cold-climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in-situ roots within the yedoma. Modern analogues of cold-climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice-rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold-climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow-free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo-Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000–55 000 cal BP) and extending through the Karginsky interstadial (55 000–25 000 cal BP) and Sartan glacial (25 000–15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high-pressure cells coupled with a strengthened Aleutian low-pressure cell would have created enhanced pressure gradient-driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental-scale region of Late Pleistocene cold-climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice-poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice-rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice-wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd.
    Print ISSN: 1045-6740
    Electronic ISSN: 1099-1530
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-05
    Description: Blomvåg, on the western coast of Norway north of Bergen, is a classical site in Norwegian Quaternary science. Foreshore marine sediments, named the Blomvåg Beds and now dated to the Bølling-Allerød from 14.8 to 13.3 cal. ka BP, contain the richest Lateglacial bone fauna in Norway, numerous mollusc shells, driftwood, and flint that some archaeologists consider as the oldest traces of humans in Norway. The main theme of this paper is that the Blomvåg Beds are overlain by a compact diamicton, named the Ulvøy Diamicton, which was interpreted previously as a basal till deposited during a glacial re-advance into the ocean during the Older Dryas ( c.  14 cal. ka BP). Sediment sections of the Blomvåg Beds and the Ulvøy Diamicton were exposed in ditches in a cemetery that was constructed in 1941–42 and have subsequently not been accessible. A number of radiocarbon and cosmogenic 10 Be exposure ages demonstrate that the diamicton is not likely to be a till because minimum deglaciation ages (14.8–14.5 cal. ka BP) from the vicinity pre-date the Ulvøy Diamicton. We now consider that sea ice and icebergs formed the Ulvøy Diamicton during the Younger Dryas. The Scandinavian Ice Sheet margin was located on the outermost coastal islands between at least c.  18.5 and 14.8 cal. ka BP; however, no ice-marginal deposits have been found offshore from this long period. The Older Dryas ice margin in this area was located slightly inside the Younger Dryas margin, whereas farther south it was located slightly beyond the Younger Dryas margin.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...