ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Nepal has approximately 1000 operational brick kilns, which contribute significantly to ambient air pollution. They also account for 1.81% of the total bricks produced in the South Asian region. Little is known about their emissions, which are consequently not represented in regional/global emission inventories. This study compared emissions from seven brick kilns. Four were Fixed Chimney Bull’s Trench Kilns (FCBTKs) and three were Induced-Draught Zigzag Kilns (IDZKs). The concentrations of carbon dioxide (CO2), sulfur dioxide (SO2), black carbon (BC), and particulate matter (PM) with a diameter less than 2.5 µm (PM2.5) were measured. The respective emission factors (EFs) were estimated using the carbon mass balance method. The average fuel-based EF for CO2, SO2, PM2.5, and BC were estimated as 1633 ± 134, 22 ± 22, 3.8 ± 2.6 and 0.6 ± 0.2 g per kg, respectively, for all FCBTKs. Those for IDZKs were 1981 ± 232, 24 ± 22, 3.1 ± 1, and 0.4 ± 0.2 g per kg, respectively. Overall, the study found that converting the technology from straight-line kilns to zigzag kilns can reduce PM2.5 emissions by ~20% and BC emissions by ~30%, based on emission factor estimates of per kilogram of fuel. While considering per kilogram of fired brick, emission reductions were approximately 40% for PM2.5 and 55% for BC, but this definitely depends on proper stacking and firing procedures.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Diesel irrigation pumps are a source of air pollution in the Indo-Gangetic Plain (IGP). The environmental implications of these pumps are often overlooked and very rarely addressed in the IGP. Few studies in the past have estimated the amount of diesel consumed by irrigation pumps in the IGP or other proxy variables to estimate the amount of emissions. A considerable amount of uncertainty remains in calculating emission factors (EF) using real-time measurements. We measured pollutants from nine diesel irrigation pumps in the southern ‘Terai’ belt of Nepal. Fuel-based EF were then estimated using the carbon mass balance method. The average EF for fine particulate matter (PM2.5), CO2, CO and black carbon (BC) were found to be 22.11 ± 3.71, 2218.10 ± 26.8, 275 ± 17.18 and 2.54 ± 0.71 g/L, respectively. Depending upon the pump characteristics (age, design, make, hours used, etc.) and fuel mixtures, the EF of PM2.5, BC and CO had larger inter-variability. This study provides estimates for an under-represented source of ambient air pollution which will assist in the development of better emission inventories and informed policy making.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-18
    Description: Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of 3 months (April–June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – Atmospheric Brown Clouds). The main objective of this work is to understand and document the level of air pollution, diurnal characteristics and influence of open burning on air quality in Lumbini. The hourly average concentrations during the entire measurement campaign ranged as follows: BC was 0.3–30.0 µg m−3, PM1 was 3.6–197.6 µg m−3, PM2. 5 was 6.1–272.2 µg m−3, PM10 was 10.5–604.0 µg m−3, O3 was 1.0–118.1 ppbv and CO was 125.0–1430.0 ppbv. These levels are comparable to other very heavily polluted sites in South Asia. Higher fraction of coarse-mode PM was found as compared to other nearby sites in the Indo-Gangetic Plain region. The ΔBC ∕ ΔCO ratio obtained in Lumbini indicated considerable contributions of emissions from both residential and transportation sectors. The 24 h average PM2. 5 and PM10 concentrations exceeded the WHO guideline very frequently (94 and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants to understand the pollutant transport pathways. The model estimated values were ∼ 1. 5 to 5 times lower than the observed concentrations for CO and PM10, respectively. Model-simulated regionally tagged CO tracers showed that the majority of CO came from the upwind region of Ganges Valley. Model performance needs significant improvement in simulating aerosols in the region. Given the high air pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-24
    Description: Particulate air pollution in the Kathmandu Valley has reached severe levels that are mainly due to uncontrolled emissions and the location of the urban area in a bowl-shaped basin with associated local wind circulations. The AERONET measurements from December 2012 to August 2014 revealed a mean aerosol optical depth (AOD) of approximately 0.30 at 675 nm during winter, which is similar to that of the post-monsoon but half of that of the pre-monsoon AOD (0.63). The distinct seasonal variations are closely related to regional-scale monsoon circulations over South Asia and emissions in the Kathmandu Valley. During the SusKat-ABC campaign (December 2012–February 2013), a noticeable increase in both aerosol scattering (σs; 313  →  577 Mm−1 at 550 nm) and absorption (σa; 98  →  145 Mm−1 at 520 nm) coefficients occurred before and after 4 January 2013. This can be attributed to the increase in wood-burned fires due to a temperature drop and the start of firing at nearby brick kilns. The σs value in the Kathmandu Valley was a factor of 0.5 lower than that in polluted cities in India. The σa value in the Kathmandu Valley was approximately 2 times higher than that at severely polluted urban sites in India. The aerosol mass scattering efficiency of 2.6 m2 g−1 from PM10 measurements in the Kathmandu Valley is similar to that reported in urban areas. However, the aerosol mass absorption efficiency was determined to be 11 m2 g−1 from PM10 measurements, which is higher than that reported in the literature for pure soot particles (7.5 ± 1.2 m2 g−1). This might be due to the fact that most of the carbonaceous aerosols in the Kathmandu Valley were thought to be mostly externally mixed with other aerosols under dry conditions due to a short travel time from their sources. The σs and σa values and the equivalent black carbon (EBC) mass concentration reached up to 757 Mm−1, 224 Mm−1, and 29 µg m−3 at 08:00 LST (local standard time), respectively but decreased dramatically during the daytime (09:00–18:00 LST), to one-quarter of the morning average (06:00–09:00 LST) due to the development of valley winds and an atmospheric bounder layer. The σs and σa values and the EBC concentration remained almost constant during the night at the levels of 410 Mm−1, 130 Mm−1, and 17 µg m−3, respectively. The average aerosol direct radiative forcings over the intensive measurement period were estimated to be −6.9 ± 1.4 W m−2 (top of the atmosphere) and −20.8 ± 4.6 W m−2 (surface). Therefore, the high atmospheric forcing (i.e., 13.9 ± 3.6 W m−2) and forcing efficiency (74.8 ± 24.2 W m−2 τ−1) can be attributed to the high portion of light-absorbing aerosols in the Kathmandu Valley, as indicated by the high black carbon (or elemental carbon) to sulphate ratio (1.5 ± 1.1).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-09
    Description: Particulate air pollution in the Kathmandu Valley has reached severe levels that are mainly due to uncontrolled emissions and the location of the urban area in a bowl-shaped basin with associated local circulations. The AERONET measurements from December 2012 to August 2014 revealed a mean aerosol optical depth (AOD) of approximately 0.3 at 675 nm during winter, which is similar to that of the post-monsoon but half of that of the pre-monsoon AOD (0.63). The distinct seasonal variations are closely related to regional-scale monsoon circulations over South Asia and emissions in the Kathmandu Valley. During the SusKat-ABC campaign (December 2012–February 2013), a noticeable increase of both aerosol scattering (σs; 313 → 522 Mm−1 at 550 nm) and absorption (σa; 98 → 145 Mm−1 at 520 nm) coefficients occurred before and after January 4, 2013. This can be attributed to the increase of wood-burned fires due to a temperature drop and the start of firing at nearby brick kilns. The σs value in the Kathmandu Valley was a factor of 0.5 lower than that in polluted cities in India. The σa value in the Kathmandu Valley was approximately 2 times higher than that at severely polluted urban sites in India. The aerosol mass scattering efficiency of 2.6 m2 g−1 in the Kathmandu Valley is similar to that reported in urban areas. However, the aerosol mass absorption efficiency was determined to be 11 m2 g−1, which is higher than that reported in the literature for pure soot particles (7.5 ± 1.2 m2 g−1). This might be due to the fact that most of the carbonaceous aerosols in the Kathmandu Valley were thought to be fresh aerosols, mostly externally mixed with other aerosols under dry conditions due to a short travel time from their sources. The σs and σa values and the equivalent black carbon (EBC) mass concentration reached up to 757 Mm−1, 224 Mm−1, and 29 µg m−3 at 08 LST, respectively but decreased dramatically during the daytime (09–18 LST), to one quarter of the morning average (06–09 LST) due to the development of valley winds and an atmospheric bounder layer. The σs and σa values and the EBC concentration remained almost constant during the night at the level of 410 Mm−1, 130 Mm−1, and 17 µg m−3, respectively. The average aerosol direct radiative forcings over the intensive measurement period were estimated to be −6.9 ± 1.4 W m−2 (top of the atmosphere) and −20.8 ± 4.6 W m−2 (surface). Therefore, the high atmospheric forcing (i.e., 13.9 ± 3.6 W m−2) and forcing efficiency (74.8 ± 24.2 W m−2 τ−1) can be attributed to the high portion of light-absorbing aerosols in the Kathmandu Valley, as indicated by the high BC (or elemental carbon) to sulphate ratio (1.5 ± 1.1).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...