ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Abstract The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high‐resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope‐based paleoclimate research. The dataset revealed distinct seasonal variations: relatively high δ18O (up to –4‰) and δD (up to –40‰) values characterise summer air masses, while lighter isotope composition (–41‰ for δ18O and –322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, while no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r2 = 0.83; p 〈 0.01; n = 55) for δ18O and +3.8‰/°C (r2 = 0.83, p 〈 0.01; n = 55) for δD. Secondary fractionation processes (e.g. contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the HYSPLIT model indicate that precipitation with the lowest mean δ18O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west i.e. the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the ECHAM5‐wiso climate model reveals a good agreement of variations in δ18O (r2 = 0.87; p 〈 0.01; n = 55) and air temperature (r2 = 0.99; p 〈 0.01; n = 71). However, the ECHAM5‐wiso model fails to capture observed variations in d excess (r2 = 0.14; p 〈 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: This study presents a multi‐proxy record from Lake Kotokel in the Baikal region at decadal‐to‐multidecadal resolution and provides a reconstruction of terrestrial and aquatic environments in the area during a 2000‐year interval of globally harsh climate often referred to as the Last Glacial Maximum (LGM). The studied lake is situated near the eastern shoreline of Lake Baikal, in a climatically sensitive zone that hosts boreal taiga and cold deciduous forests, cold steppe associations typical for northern Mongolia, and mountain tundra vegetation. The results provide a detailed picture of the period in focus, indicating (i) a driest phase (c. 24.0–23.4 cal. ka BP) with low precipitation, high summer evaporation, and low lake levels, (ii) a transitional interval of unstable conditions (c. 23.4–22.6 cal. ka BP), and (iii) a phase (c. 22.6–22.0 cal. ka BP) of relatively high precipitation (and moisture availability) and relatively high lake levels. One hotly debated issue in late Quaternary research is regional summer thermal conditions during the LGM. Our chironomid‐based reconstruction suggests at least 3.5 °C higher than present summer temperatures between c. 22.6 and 22.0 cal. ka BP, which are well in line with warmer and wetter conditions in the North Atlantic region inferred from Greenland ice‐cores. Overall, it appears that environments in central Eurasia during the LGM were affected by much colder than present winter temperatures and higher than present summer temperatures, although the effects of temperature oscillations were strongly influenced by changes in humidity.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: We present a high‐resolution reconstruction of the vegetation and climate dynamics during the penultimate interglacial, corresponding with Marine Isotope Stage (MIS) 7, based on detailed palynological analyses of lacustrine sediments from Lake El'gygytgyn, northeastern Siberia. The analysed sediments were deposited between 246 and 181 ka ago (late MIS 8 to early MIS 6.6). The interglacial vegetation was characterized by herb and shrub (mainly alder and birch) dominated plant communities. Pollen‐based biome reconstruction shows a dominance of the tundra (TUND) biome, thus indicating rather open vegetation. Warmer intervals (MIS 7.5, 7.3 and 7.1) were marked by an increase in the cold deciduous forest (CLDE) biome scores and a synchronous decrease in the cold steppe (STEP) biome scores. The thermal maximum occurred during MIS 7.1, as indicated by the highest CLDE biome scores occurring in this period, and lasted ~10 ka, possibly favoured by the high precession‐related summer insolation and the legacy of the preceding mild and dry stadial (MIS 7.2). In contrast, MIS 7.3 and 7.5 were characterized by shorter durations (~4 ka) and lower summer temperatures. The preceding cold glacial and stadial (MIS 8 and 7.4, respectively) might have led to an extensive distribution of permafrost that hindered vegetation development during the subsequent warm intervals. MIS 7.4 and 6.6 were cold and wet, probably triggered by low obliquity values and coevally low precession‐related summer insolation. As a result, these periods were marked by significantly reduced summer temperatures and an enhanced snow‐ice albedo feedback. The obtained reconstructions provide potential scenarios for future climate changes and allow a better understanding of the relationship between vegetation, climate and external/internal forcings in the high latitudes.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: The Holocene, Ahead of Print. 〈br/〉
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The Holocene, Ahead of Print. 〈br/〉
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-23
    Description: A continuous pollen record from Lake El'gygytgyn (northeastern Russian Arctic) provides detailed information concerning the regional vegetation and climate history during the Mid-Pleistocene Transition (MPT), between 1091 ka (end of Marine Isotope Stage (MIS) 32) and 715 ka (end of MIS 18). Pollen-based qualitative vegetation reconstruction along with biome reconstruction indicate that the interglacial regional vegetation history during the MPT is characterized by a gradual replacement of forest and shrub vegetation by open herbaceous communities (i.e. tundra/cold steppe). The pollen spectra reveal seven vegetation successions that have clearly distinguishable glacial-interglacial cycles. These successions are represented by the intervals of cold deciduous forest (CLDE) biome scores changing from high to low, which are basically in phase with the variations of obliquity from maxima to minima. The dominating influence of obliquity forcing on vegetation successions contradicts with the stronger power of eccentricity, as demonstrated by the result of wavelet analysis based on landscape openness reconstruction. This discrepancy shows that a single index is insufficient for catching signals of all the impacting factors. Comparisons with vegetation and environmental changes in the Asian interior suggest that global cooling during the MPT was probably the key force driving long-term aridification in the Arctic region. The accelerated aridification after MIS 24–22 was probably caused by the additional effect of the Tibetan Plateau uplift, which played an important role on intensification of the Siberian High and westerly jet systems.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-29
    Description: The varved sediment of Lake Suigetsu (central Japan) provides a valuable opportunity to obtain high-resolution, multi-proxy palaeoenvironmental data across the last glacial/interglacial cycle. In order to maximize the potential of this archive, a well-constrained chronology is required. This paper outlines the multiple geochronological techniques being applied – namely varve counting, radiocarbon dating, tephrochronology (including argon–argon dating) and optically stimulated luminescence (OSL) – and the approaches by which these techniques are being integrated to form a single, coherent, robust chronology. Importantly, we also describe here the linkage of the floating Lake Suigetsu (SG06) varve chronology and the absolute (IntCal09 tree-ring) time scale, as derived using radiocarbon data from the uppermost (non-varved) portion of the core. This tie-point, defined as a distinct (flood) marker horizon in SG06 (event layer B-07–08 at 1397.4 cm composite depth), is thus derived to be 11 255 to 11 222 IntCal09 cal. years BP (68.2% probability range).
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Print ISSN: 2055-026X
    Electronic ISSN: 2055-0278
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...