ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-01
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2018-02-26
    Description: We present an integrated age model for the incoming Cocos Plate sediments offshore Costa Rica. The data, collected over two IODP Expeditions (334 and 344), provides a medium­ to high­resolution record from the initial formation of the ocean crust in the Miocene to the present day. This study provides 〉50 age control points for the CRISP sediments from Sites U1381 and U1414. Although the two sites are just 10 km apart, there are distinct differences in the sediment and tephra record. Most notable is the presence of a hiatus at Site U1381. The hiatus, which is seen at other sites on the Cocos Plate, but not at Site U1414, may be related to erosion due to bottom water currents, mass wasting from Cocos Ridge subduction or may be related to the closure of the Central American Seaway (CAS). Sediment accumulation rates in the Miocene are comparable to modern abyssal plain rates. However, an increase is observed in the Pleistocene, when detritus from the forearc basin appears at Site U1414 ~2 Ma, shortly after the initiation of Cocos Ridge subduction. A tectonic model is presented that reconstructs the Cocos Plate, from its formation at 23 Ma to the present day. Eastern Equatorial Pacific (EEP) paleoceanographic events, such as the Miocene ‘carbonate crash’ and the Late Miocene­Early Pliocene ‘biogenic bloom’ observed at Site U1414, are also discussed.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The 1Myr tephra records of IODP (International Ocean Discovery Program) Holes U1436A and U1437B in the Izu-Bonin fore- and reararc were investigated in order to assess provenance and eruptive volumes, respectively. In total, 304 tephra samples were examined and 260 primary tephra layers were identified. Tephra provenance was determined by means of major and trace element compositions of glass shards and distinguished between Japan and Izu-Bonin arc origin of the tephra layers. A total of 33 marine tephra compositions were correlated to the Japan arc and 227 to the Izu arc. Twenty marine tephra layers were correlated between the two drilling sites. Additionally, we defined eleven correlations of marine tephra deposits to major widespread Japanese eruptions; from the 1.05Ma Shishimuta-Pink Tephra to the 30ka Aira-Tn Tephra, both from Kyushu Island. These eruptions provide independent time markers within the sediment record and six correlations were used to date tephra layers from Japan in Hole U1436A to establish an alternative age model for this hole. Furthermore, the minimum distal tephra volumes of all detected events were calculated, which enabled the comparison of the tephra volumes that derived from the Japan and the Izu-Bonin arcs. For some of the major Japanese eruptions these are the first volume estimations that also include distal deposits. All of the Japanese tephras derived from events with eruption magnitude Mv≥5.6 and three of the investigated eruptions reach magnitudes Mv≥7. Volcanic events of the Izu-Bonin arc have mostly eruption magnitudes Mv≤5.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-19
    Description: It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the similar to 100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and delta O-18 record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and similar to 13 +/- 2 kyr before the delta O-18 minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the delta O-18 record diminishes, while the tephra record maintains its strong 100 kyr periodicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: We present the first tephroanalysis based on geochemical fingerprinting of volcanic glass shards from eastern Apulian shelf sediments in the Gulf of Taranto (Italy). High sedimentation rates in the gulf are ideal for high-resolution paleoclimate studies, which rely on accurate age models. Cryptotephrostratigraphy is a novel tool for the age assessment of marine sediment cores in the absence of discrete tephra layers. High-resolution quantitative analysis of glass shard abundance in the uppermost 45 cm of a gravity core identified two cryptotephras. Microprobe analysis of glass shards supported by an accelerator mass spectrometry 14C-based age model identified the pronounced primary cryptotephra at 36 cm bsf (below sea floor) as the felsic AD 776 Monte Pilato Eruption on the island of Lipari, whereas the thinner, mafic tephra layer at 1.5 cm bsf is associated with the AD 1944 eruption of Somma-Vesuvius. Identifying these tephra layers provides an additional, 14C-independent, stratigraphic framework for further paleoclimatic studies allowing us to link Mediterranean climate and hydrology to orbital variation and large-scale atmospheric processes. Our results underline the importance of qualitative tephrostratigraphy in a highly geodynamic region, where solely quantitative approaches have demonstrated to bear a high potential for false correlations between tephra layers and eruptions.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: We examine the importance of dispersed volcanic ash as a critical component of the aluminosilicate sediment entering the Nankai Trough, located south of Japan’s island of Honshu, via the subducting Philippine Sea plate. Multivariate statistical analyses of an extensive major, trace, and rare earth element data set from bulk sediment and discrete ash layers at Integrated Ocean Drilling Program (IODP) Sites C0011 and C0012 quantitatively determine the abundance and accumulation of multiple aluminosilicate inputs to the Nankai subduction zone. We identify the eolian input of continental material to both sites, and we further find that there are an additional three ash sources from Kyushu and Honshu, Japan and other regions. Some of these ash sources may themselves represent mixtures of ash inputs, although the final compositions appear statistically distinct. The dispersed ash comprises 38 ± 7 weight percent (wt%) of the bulk sediment at Site C0011, and 34 ± 4 wt% at Site C0012. When considering the entire sediment thickness at Site C0011, the dispersed ash component supplies 38000 ± 7000 g/cm2 of material to the Nankai subduction system, whereas Site C0012 supplies 20000 ± 3000 g/cm2. These values are enormous compared to the ~2500 g/cm2 (C0011) and ~1200 g/cm2 (C0012) of ash in the discrete ash layers. Therefore, the mass of volcanic ash and chemically equivalent alteration products (e.g., smectite) that are dispersed throughout the stratigraphic succession of bulk sediment appears to be up to 15–17 times greater than the mass of discrete ash layers. The composition of the dispersed ash component at Site C0011 appears linked to that of the discrete layers, and the mass accumulation rate for dispersed ash correlates best with discrete ash layer thickness. In contrast, at Site C0012 the mass accumulation rate for dispersed ash correlates better with the number of ash layers. Together, the discrete ash layers, dispersed ash, and clay-mineral assemblages present a complete record of volcanism and erosion of volcanic sources; and indicate that mass balances and subduction factory budgets should include the mass of dispersed ash for a more accurate assessment of volcanic contributions to large-scale geochemical cycling.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-26
    Description: We report on a total of 310 samples from marine sediments drilled in the Indian Ocean that were analyzed for glass shard compositions. Samples are mainly from International Ocean Discovery Program Expeditions 353 and 362 but are complemented by samples from Expedition 354; Ocean Drilling Program Legs 183, 121, 120, 119, 116, and 115; and Deep Sea Drilling Project Leg 22. We performed 4327 successful single glass shard analyses with the electron microprobe for major element compositions and conducted 937 successful single analyses with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for trace element compositions on individual glass shards previously measured with the electron microprobe. In total, we were able to measure glass compositions for 254 samples. Of all the samples, 235 can be classified as tephra layers containing pyroclasts as the predominant component in their clast inventory between the 63 and 125 µm grain size fraction, often exceeding 90 vol%. The compositions of the Indian Ocean marine tephras range from basalt to rhyolite and from basaltic trachyandesite to trachyte and fall into the calc-alkaline, K-rich calc-alkaline, and shoshonitic magmatic series.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...