ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 136 (1991), S. 529-560 
    ISSN: 1420-9136
    Keywords: Modal summation ; broad band ; Love waves ; anelasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present an efficient scheme to compute high-frequency seismograms (up to 10 Hz) forSH-waves in a horizontally stratified medium with the mode summation method. The formalism which permits the computation of eigenvalues, eigenfunctions and related integral quantities is discussed in detail. Anelasticity is included in the model by using the variational method. Phase velocity, group velocity, energy integral and attenuation spectra of a structure enable the computation of complete strong motion seismograms, which are the basic tool for the interpretation of near-source broad-band data. Different examples computed for continental structures are discussed, where one example is the comparison between the observed transversal displacement recorded at station IVC for the November 4, Brawley 1976 earthquake and synthetic signals. In the case of a magnitudeM L =5.7 earthquake in the Friuli seismic area we apply the mode summation method to infer from waveform modeling of all three components of motion of observed data some characteristics of the source.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 143 (1994), S. 513-536 
    ISSN: 1420-9136
    Keywords: Local soil effects ; wave propagation ; numerical modelling ; seismic zonation ; seismic ground motion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Many of the numerical techniques used for seismic zonation studies treat one-dimensional structural models and/or the incidence of plane polarized body waves. These techniques are often not adequate for laterally heterogeneous structures and for sources that are not located beneath the site of interest. In such cases a more rigorous treatment of the combined effects of the source, the path and the site response is needed. This can be accomplished with a hybrid approach combining modal summation and the finite-difference technique. To demonstrate the differences between these techniques, the ground motion in the city of Benevento (Italy) is modelled. We first compare the results obtained with one-and two-dimensional structural models for vertical incidence of plane polarized body waves. These results are then compared with those obtained with the hybrid approach for two-dimensional structural models. The comparisons have allowed us to find important differences in the response obtained with the different modelling techniques. For the same site, these differences consist of strong variations in amplitude and in the shape of the spectral amplifications. For a seismic source which is not located beneath the site, vertical incidence of waves significantly overestimates the local hazard in a laterally homogeneous structure. For a laterally heterogeneous area, we can conclude that one-dimensional modelling fails to estimate the seismic hazard, whereas for a seismic source which is not located beneath the site of interest, two-dimensional modelling with vertical incidence of plane polarized body waves may not allow reliable estimates to be made of the frequency bands at which amplifications occur. The results obtained for two-dimensional structural models are used for a zonation of the city of Benevento.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The 3–D model of the Earth, as obtained with a brand new investigative technique, is discussed. However an international collaborative project, involving researchers from the whole world, has uncovered a severe systematic error in the new data acquisition system making the results of this new model highly questionable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Natural hazards 15 (1997), S. 183-197 
    ISSN: 1573-0840
    Keywords: seismic ground motion ; Naples ; numerical modelling ; finite difference methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract The seismic ground motion of a test area in the eastern district of Naples is computed with a hybrid technique based on the mode summation and the finite difference methods. This technique allows us the realistic modelling of source and propagation effects, including local soil conditions. In the modelling, we consider the 1980 Irpinia earthquake, a good example of strong shaking for the area of Naples, which is located about 90 km from the epicenter. The detailed geological setting is reconstructed from a large number of drillings. The sub-soil is mainly formed by alluvial (ash, stratified sand and peat) and pyroclastic materials overlying a pyroclastic rock (yellow neapolitan tuff), representing the neapolitan bedrock. The detailed information available on mechanical properties of the sub-soil and its geometry warrants the application of the sophisticated hybrid technique. As expected, the sedimentary cover causes an increase of the signal's amplitudes and duration. If thin peat layers are present, the amplification effects are reduced, and the peak ground accelerations are similar to those observed for the bedrock model. This can be explained by the backscattering of wave energy at such layers, that tend to seismically decouple the upper from the lower part of the structure. For SH-waves, the influence of the variations of the S-wave velocities on the spectral amplification is studied, by considering locally measured velocities and values determined from near-by down-hole measurements. The comparison between the computed spectral amplifications confirms the key role of an accurate determination of the seismic velocities of the different layers. The comparison performed between a realistic 2-D seismic response and a standard 1-D response, based on the vertical propagation of waves in a plane layered structure, shows considerable difference, from which it is evident that serious caution must be taken in the modelling of expected ground motion at a specific site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of seismology 1 (1997), S. 205-218 
    ISSN: 1573-157X
    Keywords: moment tensor ; waveform inversion ; modal summation ; explosions ; monitoring ; lateral heterogeneity ; point source ; source time function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The design of a monitoring system for detecting explosions is a very topical problem, both for routine data processing at seismological observatories as well as for the monitoring of a Comprehensive Test Ban Treaty. In this framework it is desirable to have the possibility to quantify the presence of the isotropic component in the seismic source. For this purpose a method is presented, which is based on waveform inversion for the full moment tensor retrieval. The method inverts either full waveforms or separate seismic phases and returns the mechanism and time history of a point source. Moreover, it allows to redefine the hypocentral depth of the event and, in a simplistic way, to optimize the structural model as well. In order to model strong laterally heterogeneous structures, different pairs of structural models can be used for each source-receiver path. The source is decomposed into a volumetric part (V), representing an explosive or implosive component, and into a deviatoric part, containing both the double couple (DC) and the compensated linear vector dipole (CLVD) components. The method is applied to an area in central Switzerland and to the network of the Swiss Seismological Service. The events of interest include both earthquakes and explosions. Despite some modelling inadequacies of the source-time function, the explosions can be well identified with the inverted isotropic component in the source, as long as the number of stations used for the inversion is larger than three. The results of the inversion are better for large epicenter-station distances of the order of 40–90 km.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 26 (1988), S. 349-354 
    ISSN: 1741-0444
    Keywords: Biomechanics ; Long bones ; Mineral content ; Phase velocity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The determination of loss of bone mineral in an early stage of development is important. At the present time there exists no noninvasive or nonradiological methods which can be used for routine checks. An alternative method to obtain information about mineral content of bone is to measure the mechanical properties. A new method to measure the mechanical properties of long bones by means of the dispersion analysis of flexural waves is proposed. To be independent of the frequency spectrum of the impact pulse, the phase velocities were calculated from the signals of two accelerometers placed in vivo on the tibia. This method has the advantage that the velocities can be calculated for a frequency range. The results from this method were compared with the results from a well established measurement method for bone mineral content. Both methods were applied to 43 subjects selected in such a way that a broad range of bone mineral values was covered. The results imply that the proposed method can be used to test the mechanical properties of long bones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-06
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-08-01
    Description: The strong influence of lateral heterogeneities and of source properties on the spatial distribution of ground motion indicates that the traditional methods require an alternative when earthquake records are not available. The computation of broadband synthetic seismograms makes it possible, as required by a realistic modelling, to take source and propagation effects into account, fully utilizing the large amount of geological, geophysical and geotechnical data, already available. For recent earthquakes, where strong motion observations are available, it is possible to validate the modelling by comparing the synthetic seismograms with the experimental records. The realistic modelling of the seismic input has been applied to a first-order seismic zoning of the whole territory of several countries. Even though it falls in the domain of the deterministic approaches, the method is suitable to be used in new integrated procedures which combine probabilistic and deterministic approaches and allow us to minimize the present drawbacks which characterise them when they are considered separately. Detailed modelling of the ground motion for realistic heterogeneous media (up to 10 Hz) can be immediately used in the design of new seismo-resistant constructions and in the reinforcement of existing buildings, without having to wait for a strong earthquake to occur. The discrepancies between the ground responses computed with standard methods and the results of our detailed modelling cannot be ignored when formulating building codes and retrofitting the built environment.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-26
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...