ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI G3-19-92460
    Description / Table of Contents: The Yukon Coast in Canada is an ice-rich permafrost coast and highly sensitive to changing environmental conditions. Retrogressive thaw slumps are a common thermoerosion feature along this coast, and develop through the thawing of exposed ice-rich permafrost on slopes and removal of accumulating debris. They contribute large amounts of sediment, including organic carbon and nitrogen, to the nearshore zone. The objective of this study was to 1) identify the climatic and geomorphological drivers of sediment-meltwater release, 2) quantify the amount of released meltwater, sediment, organic carbon and nitrogen, and 3) project the evolution of sediment-meltwater release of retrogressive thaw slumps in a changing future climate. The analysis is based on data collected over 18 days in July 2013 and 18 days in August 2012. A cut-throat flume was set up in the main sediment-meltwater channel of the largest retrogressive thaw slump on Herschel Island. In addition, two weather stations, one on top of the undisturbed tundra and one on the…
    Type of Medium: Monograph available for loan
    Pages: 163 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Table of Contents Abstract Kurzfassung Abbreviations and nomenclature 1. Introduction 2. Scientific Background 2.1. Permafrost 2.2.Retrogressive Thaw Slumps 2.3. Inputs of Freshwater, Sediment and Carbon into the Canadian Beaufort Sea 3. Study Area 3.1. Regional Setting: Yukon Coast and Herschel Island 3.2. Retrogressive Thaw Slumps 4. Material and Methods 4.1. Field Work 4.1.1. Terrain Photography 4.1.2. Differential Global Positioning System (DGPS) 4.1.3. Light Detection And Ranging (LiDAR) and Digital Elevation Model (DEM) 4.1.4. Micrometeorology 4.1.5. Discharge Measurement 4.1.6. Multiple Regression-Statistical Relationships between Micrometeorological Variables and Discharge 4.1.7. Sampling 4.2. Laboratory Analyses 4.2.1. Sedimentological Analyses 4.2.2. Hydrochemical Analyses 4.3. Fluxes of Sediment and (In-) Organic Matter 5. Results 5.1. Field Work 5.1.1. Terrain Photography 5.1.2. Differential Global Positioning System (DGPS) 5.1.3. Light Detecting And Ranging (LiDAR) and Digital Elevation Model (DEM) 5.1.4. Micrometeorology 5.1.5. Discharge 5.1.6. Multiple Regression - Statistical Relationships between Micrometeorology and Discharge 5.2. Laboratory Analyses 5.2.1. Sedimentological Analyses 5.2.2. Hydrochemical Analyses 5.3. Fluxes of Sediment-meltwater 6. Discussion 6.1. Microclimatological and Geomorphological Factors Controlling Discharge 6.1.1. Diurnal Variations 6.1.2. Seasonal Variations 6.2. Contribution of Retrogressive Thaw Slumps to the Sediment Budget of the Yukon Coast 6.2.1. Origin of Outflow Material 6.2.2. Slump D in the Regional Context 6.2.3. Seasonal Sediment Budget Compilation for Slump D 6.2.4. Retrogressive Thaw Slump Occurrence along the Yukon Coast 6.2.5. Input to the Beaufort Sea 6.3. Projected Climatic Change and its Impact on Retrogressive Thaw Slump Outflow 6.4. Uncertainties and Limitations 6.5. Future Research 7. Conclusion 8. Appendix 8.1. Field Work 8.1.1. Slump D's northern headwall profile 8.1.2. Collinson Head slump 8.1.3. Herschel Island West Coast slump 8.1.4. Roland Bay slump 8.1.5. Kay Point slump 8.2. Laboratory Work 8.2.1. Volumetric Ice Content 8.2.2. Grain Size 8.3. Evolution of Slump D 8.3.1. Geo Eye satellite of Slump D 8.3.2. Aerial Oblique Photography of Slump D 8.3.3. LiDAR of Slump D 8.3.4. Time Lapse Photography of Slump D's Headwall 9. References 10. Financial and technical support 11. Acknowledgement - Danksagung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI G3-19-92415
    Type of Medium: Dissertations
    Pages: VIII, 154, xv Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Table of contents Abstract Zusammenfassung 1 Motivation 2 Introduction 2.1 Arctic climate changes and their impacts on Coastal processes 2.2 Shoreline retreat along Arctic coasts 2.3 Impacts of Coastal erosion 2.3.1 Material fluxes 2.3.2 Retrogressive thaw slumps 2.3.3 Socio-economic impacts 2.4 Objectives 2.5 Study area 2.6 Thesis structure 2.7 Authors’ contributions 3 Variability in rates of Coastal change along the Yukon coast, 1951 to 2015 3.1 Introduction 3.2 Study Area 3.3 Data and Methods 3.3.1 Remote sensing data 3.3.2 Field survey data 3.3.3 Classification of shoreline 3.3.4 Transect-wise analyses of shoreline movements through time 3.4 Results 3.4.1 Temporal variations in shoreline change rates 3.4.2 Alongshore rates of change 3.4.3 Shoreline dynamics along field sites 3.4.4 Dynamics of lagoons, barrier Islands and spits (gravel features) 3.4.5 Yukon Territory land loss 3.5 Discussion 3.5.1 Temporal variations in shoreline change rates 3.5.2 Alongshore rates of change 3.5.3 Dynamics of lagoons, barrier Islands, and spits (gravel features) 3.5.4 Expected shoreline changes as a consequence of future climate warming 3.6 Conclusions Context 4 Coastal erosion of permafrost Solls along the Yukon Coastal Plain and Kuxes oforganic carbon to the Canadian Beaufort Sea 4.1 Introduction 4.2 Study Area 4.3 Methods 4.3.1 Sample collection and laboratory analyses 4.3.2 Soll organic carbon determinations 4.3.3 Flux of organic soil carbon and Sediments 4.3.4 Fate of the eroded soil organic carbon 4.4 Results 4.4.1 Ground lce 4.4.2 Organic carbon contents 4.4.3 Material fluxes 4.5 Discussion 4.5.1 Ground lce 4.5.2 Organic carbon contents 4.5.3 Material fluxes 4.5.4 Organic carbon in nearshore Sediments 4.6 Conclusion Context 5 Terrain Controls on the occurrence of Coastal retrogressive thaw slumpsalong the Yukon Coast, Canada 5.1 Introduction 5.2 Study Area 5.3 Methods 5.3.1 Mapping of RTSs and landform Classification 5.3.2 Environmental variables 5.3.3 Univariate regression trees 5.4 Results 5.4.1 Characteristics of RTS along the coast 5.4.2 Density and areal coverage od RTSs along the Yukon Coast 5.5 Discussion 5.5.1 Characteristics and distribution of RTSs along the Yukon Coast 5.5.2 Terrain factors explaining RTS occurrence 5.5.3 Coastal processes 5.6 Conclusions Context 6 Impacts of past and fiiture Coastal changes on the Yukon coast - threats forcultural sites, infrastructure and travel routes 6.1 Introduction 6.2 Study Area 6.3 Methods 6.3.1 Data for shoreline projections 6.3.2 Shoreline projection for the conservative scenario (S1) 6.3.3 Shoreline Projection for the dynamic scenario (S2) 6.3.4 Positioning and characterizing of cultural sites 6.3.5 Calculation of losses under the S1 and S2 scenarios 6.3.6 Estimation of future dynamics in very dynamic areas 6.4 Results and discussion 6.4.1 Past and future shoreline change rates 6.4.2 Cultural sites 6.4.3 Infrastructure and travel routes 6.5 Conclusions 7 Discussion 7.1 The importance of understanding climatic drivers of Coastal changes 7.2 The influence of shoreline change rates on retrogressive thaw slump activity 7.3 On the calculation of carbon fluxes from Coastal erosion along the Yukon coast 7.4 Impacts of present and future Coastal erosion on the natural and human environment 7.5 Synthesis 8 Summary and Conclusions Bibliography Supporting Material Data Set ds01 Table S1 Table S3 Abbreviations and Nomendature Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI G3-20-93465
    Type of Medium: Dissertations
    Pages: xi, 113, xxxvii Seiten , Illustrationen, Diagramme
    Language: English
    Note: Table of Contents Abstract Zusammenfassung List of Figures List of Tables 1. Introduction 1.1 Scientific Background 1.1.1 Arctic Climate Change 1.1.2 Permafrost Degradation 1.1.3 The Arctic Freshwater System and its Biogeochemistry 1.2 Objectives 1.3 Study Region and Methods 1.3.1 Study Area 1.3.2 Field Sampling and Measurements 1.3.3 Geochemical Analyses 1.3.4 Data Processing 1.4 Thesis Structure 1.5 Author Contributions 2. Spatial Variability of Dissolved Organic Carbon, Solutes and Suspended Sediment in Disturbed Low Arctic Coastal Watersheds 2.1 Abstract 2.2 Introduction 2.3 Study Site 2.4 Methods 2.4.1 Stream Monitoring 2.4.2 Mapping of Disturbances 2.4.3 Flux Estimates and Statistics 2.5 Results 2.5.1 Catchment Disturbance 2.5.2 Runoff and Hydrochemistry 2.5.3 Lateral Transport of Stream Water 2.5.4 Hydrochemical Composition and Fluxes in Nearby Streams 2.6 Discussion 2.6.1 Total Runoff and Water Quality 2.6.2 Water Quality Changes from Headwaters to Downstream 2.6.3 Changes in Hydrochemistry and Isotopic Composition over Time 2.6.4 Importance of Disturbances for Hydrochemistry 2.7 Conclusions 2.8 Supplementary Material 3. Terrestrial Colored Dissolved Organic Matter (cDOM) in Arctic Catchments - Characterizing Organic Matter Composition Across the Arctic 3.1 Introduction 3.2 Study Area 3.3 Methods 3.3.1 Field Methods and Hydrochemistry 3.3.2 Statistical Analyses 3.4 Results 3.4.1 Meteorological Conditions and General Hydrochemistry 3.4.2 DOC and cDOM Absorption Characteristics 3.4.3 Downstream Patterns of DOC and cDOM Along Longitudinal Transects 3.4.4 Temporal Trends ofDOC and cDOM with Changing Meteorological Conditions 3.5 Discussion 3.5.1 Limitations of cDOM Measurements from Terrestrial Sources 3.5.2 Catchment Processes and Biogeochemical Cycling 3.5.2.1 Regional Catchment Properties 3.5.2.2 Rainfall Events 3.5.2.3 Downstream Patterns and Impact of Permafrost Disturbance 3.5.3 Nature of cDOM-DOC Across the Terrestrial Arctic 3.6 Conclusion 3.7 Supplementary Material 4. Summer Rainfall DOC, Solute and Sediment Fluxes in a Small Arctic Coastal Catchment on Herschel Island (Yukon Territory, Canada) 4.1 Abstract 4.2 Introduction 4.3 Study Site 4.4 Methodology 4.4.1 Weather data 4.4.2 Hydrology 4.4.3 Suspended Sediment and Hydrochemistry 4.4.4 Flux Estimates and Statistics 4.5 Results 4.5.1 Meteorological Conditions 4.5.2 Streamflow and Electrical Conductivity 4.5.3 Transport of Suspended Sediment and Organic Matter 4.5.4 Solute Transport 4.5.5 Alluvial Fan Sampling 4.6 Discussion 4.6.1 Hydrological Response 4.6.2 Water Quality and Fluxes 4.6.3 Rainfall Response and Flow Pathways 4.7 Conclusions 4.8 Supplementary Material 5. Synthesis 5.1 Impacts of Permafrost Degradation on Stream Biogeochemistry 5.2 Controls on DOM Quality across the Arctic 5.3 Biogeochemical Fluxes from Small Coastal Catchments to the Arctic Ocean 5.4 Challenges 5.5 Outlook Acronyms Bibliography Acknowledgements Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...