ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-27
    Description: Predictions of floods, droughts, and fast drought‐flood transitions are required at different time scales to develop management strategies targeted at minimizing negative societal and economic impacts. Forecasts at daily and seasonal scale are vital for early warning, estimation of event frequency for hydraulic design, and long‐term projections for developing adaptation strategies to future conditions. All three types of predictions—forecasts, frequency estimates, and projections—typically treat droughts and floods independently, even though both types of extremes can be studied using related approaches and have similar challenges. In this review, we (a) identify challenges common to drought and flood prediction and their joint assessment and (b) discuss tractable approaches to tackle these challenges. We group challenges related to flood and drought prediction into four interrelated categories: data, process understanding, modeling and prediction, and human–water interactions. Data‐related challenges include data availability and event definition. Process‐related challenges include the multivariate and spatial characteristics of extremes, non‐stationarities, and future changes in extremes. Modeling challenges arise in frequency analysis, stochastic, hydrological, earth system, and hydraulic modeling. Challenges with respect to human–water interactions lie in establishing links to impacts, representing human–water interactions, and science communication. We discuss potential ways of tackling these challenges including exploiting new data sources, studying droughts and floods in a joint framework, studying societal influences and compounding drivers, developing continuous stochastic models or non‐stationary models, and obtaining stakeholder feedback. Tackling one or several of these challenges will improve flood and drought predictions and help to minimize the negative impacts of extreme events. This article is categorized under: Science of Water 〉 Science of Water
    Description: Drought and flood modeling and prediction challenges related to (a) data, (b) process understanding, (c) modeling and prediction, and (d) human–water interactions. image
    Description: Swiss National Science Foundation http://dx.doi.org/10.13039/501100001711
    Keywords: 551.48 ; droughts ; floods ; forecasting ; hydrologic extremes ; prediction
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-14
    Description: This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow models in the context of local- and global-scale modelling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. Although it is not part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface, Snow and Soil Moisture Model Intercomparison (LS3MIP).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 40 (2004), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Drought conditions in the summer of 2002 prompted several cities along Colorado's Front Range to enact restrictions on outdoor water use, focusing primarily on limiting the frequency of lawn watering. The different approaches utilized by eight water providers were tracked to determine the level of water savings achieved, measured as a comparison of 2002 usage to 2000 to 2001 average usage, and also based on a statistical estimate of 2002 “expected use” that accounts for the impact of drought conditions on demand. Mandatory restrictions were shown to be an effective tool for drought coping. During periods of mandatory restrictions, savings measured in expected use per capita ranged from 18 to 56 percent, compared to just 4 to 12 percent savings during periods of voluntary restrictions. As anticipated, providers with the most stringent restrictions achieved the greatest savings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 40 (2004), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Historical flow records are used to estimate the regulatory low flows that serve a key function in setting discharge permit limits through the National Pollutant Discharge Elimination System, which provides a nationwide mechanism for protecting water quality. Use of historical records creates an implicit connection between water quality protection and climate variability. The longer the record, the more likely the low flow estimate will be based on a broad set of climate conditions, and thus provides adequate water quality protection in the future. Unfortunately, a long record often is not available at a specific location. This analysis examines the connection between climate variability and the variability of biologically based and hydrologically based low flow estimates at 176 sites from the Hydro-Climatic Data Network, a collection of stream gages identified by the USGS as relatively free of anthropogenic influences. Results show that a record of 10 to 20 years is necessary for satisfactory estimates of regulatory low flows. Although it is possible to estimate a biologically based low flow from a record of less than 10 years, these estimates are highly uncertain and incorporate a bias that undermines water quality protection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-02-01
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-01
    Description: Weather and climate variability strongly influence the people, infrastructure, and economy of Alaska. However, the sparse observational network in Alaska limits our understanding of meteorological variability, particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September 2002–August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, generated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteorological and hydrologic processes, and provides a baseline against which to measure future environmental change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between annual mean WRF and observation-based gridded fields are r = 0.89 for 2-m temperature, r = 0.75 for precipitation, r = 0.82 for snow-day fraction, r = 0.55 for first snow day of the season, and r = 0.71 for last snow day of the season. A shortcoming of the WRF dataset is that spring snowmelt occurs too early over a majority of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved representation of the interannual variability of 2-m temperature and precipitation and accurately simulated (relative to regional station observations) winter and summer precipitation maxima. This initial evaluation suggests that the 4-km WRF climate dataset robustly simulates meteorological processes and recent climatic variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further insight on its ability to represent other aspects of Alaska’s climate.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-29
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-01
    Description: With limited computational resources, there is a need for computationally frugal models. This is particularly the case for atmospheric sciences, which have long relied on either simplistic analytical solutions or computationally expensive numerical models. The simpler solutions are inadequate for many problems, while the cost of numerical models makes their use impossible for many problems, most notably high-resolution climate downscaling applications spanning large areas, long time periods, and many global climate projections. Here the Intermediate Complexity Atmospheric Research model (ICAR) is presented to provide a new step along the modeling complexity continuum. ICAR leverages an analytical solution for high-resolution perturbations to wind velocities, in conjunction with numerical physics schemes, that is, advection and cloud microphysics, to simulate the atmosphere. The focus of the initial development of ICAR is for predictions of precipitation, and eventually temperature, humidity, and radiation at the land surface. Comparisons between ICAR and the Weather Research and Forecasting (WRF) Model for simulations over an idealized mountain are presented, as well as among ICAR, WRF, and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) observation-based product for a year-long simulation over the Colorado Rockies. In the ideal simulations, ICAR matches WRF precipitation predictions across a range of environmental conditions with a coefficient of determination r2 of 0.92. In the Colorado Rockies, ICAR, WRF, and PRISM show very good agreement, with differences between ICAR and WRF comparable to the differences between WRF and PRISM in the cool season. For these simulations, WRF required 140–800 times more computational resources than ICAR.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-03
    Description: Water resources management decisions commonly depend on monthly to seasonal streamflow forecasts, among other kinds of information. The skill of such predictions derives from the ability to estimate a watershed’s initial moisture and energy conditions and to forecast future weather and climate. These sources of predictability are investigated in an idealized (i.e., perfect model) experiment using calibrated hydrologic simulation models for 424 watersheds that span the continental United States. Prior work in this area also followed an ensemble-based strategy for attributing streamflow forecast uncertainty, but focused only on two end points representing zero and perfect information about future forcings and initial conditions. This study extends the prior approach to characterize the influence of varying levels of uncertainty in each area on streamflow prediction uncertainty. The sensitivities enable the calculation of flow forecast skill elasticities (i.e., derivatives) relative to skill in either predictability source, which are used to characterize the regional, seasonal, and predictand variations in flow forecast skill dependencies. The resulting analysis provides insights on the relative benefits of investments toward improving watershed monitoring (through modeling and measurement) versus improved climate forecasting. Among other key findings, the results suggest that climate forecast skill improvements can be amplified in streamflow prediction skill, which means that climate forecasts may have greater benefit for monthly-to-seasonal flow forecasting than is apparent from climate forecast skill considerations alone. The results also underscore the importance of advancing hydrologic modeling, expanding watershed observations, and leveraging data assimilation, all of which help capture initial hydrologic conditions that are often the dominant influence on hydrologic predictions.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-17
    Description: Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...