ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-23
    Description: The development of effective pharmacological inhibitors of multidomain scaffold proteins, notably transcription factors, is a particularly challenging problem. In part, this is because many small-molecule antagonists disrupt the activity of only one domain in the target protein. We devised a chemical strategy that promotes ligand-dependent target protein degradation using as an example the transcriptional coactivator BRD4, a protein critical for cancer cell growth and survival. We appended a competitive antagonist of BET bromodomains to a phthalimide moiety to hijack the cereblon E3 ubiquitin ligase complex. The resultant compound, dBET1, induced highly selective cereblon-dependent BET protein degradation in vitro and in vivo and delayed leukemia progression in mice. A second series of probes resulted in selective degradation of the cytosolic protein FKBP12. This chemical strategy for controlling target protein stability may have implications for therapeutically targeting previously intractable proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Georg E -- Buckley, Dennis L -- Paulk, Joshiawa -- Roberts, Justin M -- Souza, Amanda -- Dhe-Paganon, Sirano -- Bradner, James E -- P01 CA066996/CA/NCI NIH HHS/ -- P01-CA066996/CA/NCI NIH HHS/ -- R01-CA176745/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1376-81. doi: 10.1126/science.aab1433. Epub 2015 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. james_bradner@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999370" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Azepines/chemistry/*pharmacology/therapeutic use ; Cell Line, Tumor ; Crystallography, X-Ray ; Disease Models, Animal ; *Drug Design ; Leukemia, Promyelocytic, Acute/drug therapy ; Ligands ; Mice ; Molecular Targeted Therapy ; Nuclear Proteins/antagonists & inhibitors/chemistry/*metabolism ; Peptide Hydrolases/*metabolism ; Phthalimides/*chemistry ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Proteolysis/*drug effects ; Tacrolimus Binding Protein 1A/metabolism ; Thalidomide/*analogs & derivatives/chemistry/pharmacology/therapeutic use ; Transcription Factors/antagonists & inhibitors/chemistry/*metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-26
    Description: The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A. We observed increased intracellular concentrations of methylthioadenosine (MTA, the metabolite cleaved by MTAP) in cells harboring MTAP deletions. Furthermore, MTA specifically inhibited PRMT5 enzymatic activity. Administration of either MTA or a small-molecule PRMT5 inhibitor showed a modest preferential impairment of cell viability for MTAP-null cancer cell lines compared with isogenic MTAP-expressing counterparts. Together, our findings reveal PRMT5 as a potential vulnerability across multiple cancer lineages augmented by a common "passenger" genomic alteration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kryukov, Gregory V -- Wilson, Frederick H -- Ruth, Jason R -- Paulk, Joshiawa -- Tsherniak, Aviad -- Marlow, Sara E -- Vazquez, Francisca -- Weir, Barbara A -- Fitzgerald, Mark E -- Tanaka, Minoru -- Bielski, Craig M -- Scott, Justin M -- Dennis, Courtney -- Cowley, Glenn S -- Boehm, Jesse S -- Root, David E -- Golub, Todd R -- Clish, Clary B -- Bradner, James E -- Hahn, William C -- Garraway, Levi A -- KL2 TR001100/TR/NCATS NIH HHS/ -- U01 CA176058/CA/NCI NIH HHS/ -- U54 CA112962/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1214-8. doi: 10.1126/science.aad5214. Epub 2016 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. levi_garraway@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912360" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Deoxyadenosines/metabolism/pharmacology ; Enzyme Inhibitors/pharmacology ; Gene Deletion ; Humans ; Isoquinolines/pharmacology ; Neoplasms/*drug therapy/enzymology ; Protein-Arginine N-Methyltransferases/antagonists & ; inhibitors/genetics/*metabolism ; Purine-Nucleoside Phosphorylase/genetics/*metabolism ; Pyrimidines/pharmacology ; Thionucleosides/metabolism/pharmacology ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-21
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Leakage rate limits of hermetically sealed spacecraft electronic components, and correlation of radioactive gas and helium mass spectrometer detection methods
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-61225
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...