ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-01
    Description: Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-21
    Description: To improve the protein nutritional quality of canola (Brassica napus L.) meal, further investigation of the effects of processing conditions and post-production treatments is desirable. The impact of barrel dry heat temperature (20 °C (cold press) and 100 °C (expeller)) and moist heat pressure (MHP) duration time on general nutritional properties, Maillard reaction product (MRP) formation, in vitro protein degradability, and molecular and microscopic structural characteristics of canola meals were investigated. Increased MHP duration reduced (p 〈 0.05) dry matter, soluble protein, rapidly degradable protein, yellowness (early MRP), whiteness (late MRPs), absorbance at 294 nm (intermediate MRPs), and amide I; and increased (p 〈 0.05) non-protein N, neutral detergent fibre, neutral detergent insoluble crude protein (CP), intermediately and slowly degradable protein, in vitro effective CP degradability, redness, degree of colour change, and browning. Increased dry heat temperature reduced (p 〈 0.01) CP and rapidly degradable protein, constricted amide II, reduced (p 〈 0.05) protein solubility in 0.5% KOH and increased (p 〈 0.05) acid-detergent fibre and intermediate MRPs. Browning index and redness exhibited potential as rapid indicators of effective CP degradability and soluble protein, respectively. Dry heat and MHP altered (p 〈 0.05) lipid-related functional groups. Dry heat affected napin solubility, and MHP altered cruciferin and napin solubility. Application of MHP induced the formation of proteolysis-resistant protein aggregates with crevices containing oil bodies. Induced changes may impact the supply of proteins and amino acids and subsequently the yield and composition (protein and lipid) of milk produced by dairy cows.
    Electronic ISSN: 2076-2615
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2017-08-24
    Description: Impacts of a warming climate are amplified in the Arctic. One notorious impact is recent and record-breaking summertime sea-ice loss. Expanding areas of open water and a prolonged ice-free season create opportunity for some industries but challenge indigenous peoples relying on sea ice for transportation and access to food. The observed and projected increase of Arctic maritime activity requires accurate sea-ice forecasts to protect life, environment, and property. Motivated by emerging prediction needs on the operational timescale (≤10 days), this study explores where local indigenous knowledge (LIK) fits into the forecaster toolbox and how it can be woven into useful sea-ice information products. The 2011 spring ice retreat season in the Bering Sea is presented as a forecasting case study. LIK, housed in a database of community-based ice and weather logs, and an ice-ocean forecast model developed by the US Navy are analyzed for their ability to provide information relevant to stakeholder needs. Additionally, metrics for verifying numerical sea-ice forecasts on multiple scales are derived. The model exhibits skill relative to persistence and climatology on the regional scale. At the community scale, we discuss how LIK and new model guidance can enhance public sea-ice information resources.
    Electronic ISSN: 2368-7460
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 513-520, doi:10.1175/BAMS-D-16-0323.1.
    Description: Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).
    Description: This work was supported by NOAA Ocean and Atmospheric Research and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and by the Innovative Technology for Arctic Exploration (ITAE) program at JISAO/PMEL. Jayne, Robbins, and Ekholm were supported by ONR (N00014-12-10110).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...