ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-09-01
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-09
    Description: To assess the history of greenhouse gas emissions and individual countries' contributions to emissions and climate change, detailed historical data are needed. We combine several published datasets to create a comprehensive set of emissions pathways for each country and Kyoto gas, covering the years 1850 to 2014 with yearly values, for all UNFCCC member states and most non-UNFCCC territories. The sectoral resolution is that of the main IPCC 1996 categories. Additional time series of CO2 are available for energy and industry subsectors. Country-resolved data are combined from different sources and supplemented using year-to-year growth rates from regionally resolved sources and numerical extrapolations to complete the dataset. Regional deforestation emissions are downscaled to country level using estimates of the deforested area obtained from potential vegetation and simulations of agricultural land. In this paper, we discuss the data sources and methods used and present the resulting dataset, including its limitations and uncertainties. The dataset is available from doi:10.5880/PIK.2016.003 and can be viewed on the website accompanying this paper (http://www.pik-potsdam.de/primap-live/primap-hist/).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-02
    Description: To assess the history of greenhouse gas emissions and individual countries' contributions to emissions and climate change, detailed historical data is needed. We combine several published datasets to create a comprehensive set of emission pathways of each country and Kyoto gas covering the years 1850 to 2014 for all UNFCCC member states as well as most non-UNFCCC territories. The sectoral resolution is that of the main IPCC 1996 categories. Additional subsectors are available for time series of CO2 from energy and industry. Country resolved data is combined from different sources and supplemented using growth rates from region resolved sources and numerical extrapolations to complete the dataset. Regional deforestation emissions are downscaled to country level using estimates of the deforested area obtained from potential vegetation and simulations of agricultural land. In this paper, we discuss the data sources and methods used and present the resulting dataset including its limitations and uncertainties. The dataset is available from http://doi.org/10.5880/PIK.2016.003 and can be viewed on the website accompanying this paper (www.pik-potsdam.de/primap-live/primap-hist/).
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-09
    Description: All Annex I Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to report domestic emissions on an annual basis in a 'Common Reporting Format' (CRF). In 2015, the CRF data reporting was updated to follow the more recent 2006 guidelines from the IPCC and the structure of the reporting tables was modified accordingly. However, the hierarchical categorisation of data in the IPCC 2006 guidelines is not readily extracted from the reporting tables. In this paper, we present the PRIMAP-crf data as a re-constructed hierarchical dataset according to the IPCC 2006 guidelines. Furthermore, the data is organised in a series of tables containing all available countries and years for each GHG individual gas and category reported. It is therefore readily usable for climate policy assessment, such as the quantification of emissions reduction targets. In addition to single gases, the Kyoto basket of greenhouse gases (CO2, N2O, CH4, HFCs, PFCs, SF6, and NF3) is provided according to multiple global warming potentials. The dataset was produced using the PRIMAP emissions module. Key processing steps include; extracting data from submitted CRF Excel spreadsheets, mapping CRF categories to IPCC 2006 categories, constructing missing categories from available data, and aggregating single gases to gas baskets. Finally, we describe key aspects of the data with relevance for climate policy; the contribution of NF₃ to national totals, changes in data reported over subsequent years, and issues or difficulties encountered when processing currently available data. The processed data is available under an Open Data CC BY 4.0 license, and available at doi:10.5880/pik.2018.001.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-09
    Description: All Annex I Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to report domestic emissions on an annual basis in a “Common Reporting Format” (CRF). In 2015, the CRF data reporting was updated to follow the more recent 2006 guidelines from the IPCC and the structure of the reporting tables was modified accordingly. However, the hierarchical categorisation of data in the IPCC 2006 guidelines is not readily extracted from the reporting tables. In this paper, we present the PRIMAP-crf data as a re-constructed hierarchical dataset according to the IPCC 2006 guidelines. Furthermore, the data are organised in a series of tables containing all available countries and years for each individual gas and category reported. It is therefore readily usable for climate policy assessment, such as the quantification of emissions reduction targets. In addition to single gases, the Kyoto basket of greenhouse gases (CO2, N2O, CH4, HFCs, PFCs, SF6, and NF3) is provided according to multiple global warming potentials. The dataset was produced using the PRIMAP emissions module. Key processing steps include extracting data from submitted CRF Excel spreadsheets, mapping CRF categories to IPCC 2006 categories, constructing missing categories from available data, and aggregating single gases to gas baskets. Finally, we describe key aspects of the data with relevance for climate policy: the contribution of NF3 to national totals, changes in data reported over subsequent years, and issues or difficulties encountered when processing currently available data. The processed data are available under an Open Data CC BY 4.0 license, and are available at https://doi.org/10.5880/pik.2018.001.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-31
    Description: Reduced-complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive Earth system models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect RCMIP will extend over multiple phases, with Phase 1 being the first. In Phase 1, we focus on the RCMs' global-mean temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on complex Earth system and atmosphere–ocean general circulation models. Using both scenario-based and idealised experiments, we examine RCMs' global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the approximately 1 ∘C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-mean-square error of 0.2 ∘C over a range of experiments. Furthermore, we find that, for the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP)-based scenario pairs that share the same IPCC Fifth Assessment Report (AR5)-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our idealised setup of RCMs with a climate sensitivity of 3 ∘C, the difference for the ssp585–rcp85 pair by 2100 is around 0.23∘C(±0.12 ∘C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the utility of RCMIP's open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented here and deepen our understanding of RCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-23
    Description: Abstract
    Description: This is an updated version of Gütschow et al. (2019, http://doi.org/10.5880/pik.2019.001). Please use this version which incorporates updates to input data as well as correction of errors in the original dataset and its previous updates. For a detailed description of the changes please consult the CHANGELOG included in the data description document.The PRIMAP-hist dataset combines several published datasets to create a comprehensive set of greenhouse gas emission pathways for every country and Kyoto gas covering the years 1850 to 2017, and all UNFCCC (United Nations Framework Convention on Climate Change) member states, as well as most non-UNFCCC territories. The data resolves the main IPCC (Intergovernmental Panel on Climate Change) 2006 categories. For CO2, CH4, and N2O subsector data for Energy, Industrial Processes and Agriculture is available. Version 2.1 of the PRIMAP-hist dataset does not include emissions from Land use, land use change and forestry (LULUCF).List of datasets included in this data publication:(1) PRIMAP-hist_v2.1_09-Nov-2019.csv: With numerical extrapolation of all time series to 2017. (only in .zip folder)(2) PRIMAP-hist_no_extrapolation_v2.1_09-Nov-2019.csv: Without numerical extrapolation of missing values. (only in .zip folder)(3) PRIMAP-hist_v2.1_data-format-description: including CHANGELOG(4) PRIMAP-hist_v2.1_updated_figures: updated figures of those published in Gütschow et al. (2016)(all files are also included in the .zip folder)When using this dataset or one of its updates, please also cite the data description article (Gütschow et al., 2016, http://doi.org/10.5194/essd-8-571-2016) to which this data are supplement to. Please consider also citing the relevant original sources.SOURCES:- Global CO2 emissions from cement production v4: Andrew (2019)- BP Statistical Review of World Energy: BP (2019)- CDIAC: Boden et al. (2017)- EDGAR version 4.3.2: JRC and PBL (2017), Janssens-Maenhout et al. (2017)- EDGAR versions 4.2 and 4.2 FT2010: JRC and PBL (2011), Olivier and Janssens-Maenhout (2012)- EDGAR-HYDE 1.4: Van Aardenne et al. (2001), Olivier and Berdowski (2001)- FAOSTAT database: Food and Agriculture Organization of the United Nations (2019)- RCP historical data: Meinshausen et al. (2011)- UNFCCC National Communications and National Inventory Reports for developing countries: UNFCCC (2019)- UNFCCC Biennal Update Reports: UNFCCC (2019)- UNFCCC Common Reporting Format (CRF): UNFCCC (2018), UNFCCC (2019), Jeffery et al. (2018)Full references are available in the data description document.
    Description: Methods
    Description: Country resolved data are combined from different sources using the PRIMAP emissions module (Nabel et. al., 2011). They are supplemented with growth rates from regionally resolved sources and numerical extrapolations.
    Keywords: greenhouse gas emissions ; historical emissions ; emissions time series ; composite source ; national emissions ; climate change ; EARTH SCIENCE SERVICES 〉 MODELS 〉 SOCIAL AND ECONOMIC MODELS ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 ENVIRONMENTAL IMPACTS ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 ENVIRONMENTAL IMPACTS 〉 INDUSTRIAL EMISSIONS ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 ENVIRONMENTAL IMPACTS 〉 FOSSIL FUEL BURNING ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC CHEMISTRY 〉 TRACE GASES/TRACE SPECIES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS ; environmental policy
    Language: English
    Type: Dataset
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...