ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cornwall, Christopher Edward; Boyd, Philip W; McGraw, Christina M; Hepburn, Christopher D; Pilditch, Conrad A; Morris, Jaz N; Smith, Abigail M; Hurd, Catriona L (2014): Diffusion Boundary Layers Ameliorate the Negative Effects of Ocean Acidification on the Temperate Coralline Macroalga Arthrocardia corymbosa. PLoS ONE, 9(5), e97235, https://doi.org/10.1371/journal.pone.0097235
    Publication Date: 2024-03-15
    Description: Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion) boundary layer (DBL), formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 'ambient' and 7.65 a worst case 'ocean acidification' scenario projected for 2100), each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick). Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface) maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05) was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3) responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Arthrocardia corymbosa; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbon, organic, total; Carbon/Nitrogen ratio; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard error; Chlorophyll a; Chlorophyll c; Chlorophyll d; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Diffusive boundary layer; Diffusive boundary layer, standard error; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Identification; Karitane_South_Island; Laboratory experiment; Light capturing capacity; Light saturation point; Macroalgae; Maximal electron transport rate, relative; Maximum photochemical quantum yield of photosystem II; Nitrogen, organic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Photoinhibition; Phycocyanin; Phycoerythrin; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Proportion; Recruitment; Recruit size; Reproduction; Rhodophyta; Salinity; Single species; South Pacific; Species; Temperate; Temperature, water; Temperature, water, standard error; Treatment; δ13C; δ15N
    Type: Dataset
    Format: text/tab-separated-values, 3500 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cornwall, Christopher Edward; Hepburn, Christopher D; Pritchard, Daniel; Currie, Kim I; McGraw, Christina M; Hunter, Keith A; Hurd, Catriona L (2012): Carbon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48(1), 137-144, https://doi.org/10.1111/j.1529-8817.2011.01085.x
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Benthos; Bicarbonate; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated, see reference(s); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calculated using SWCO2 (Hunter, 2007); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard error; Carbon dioxide, total; Chlorophyta; Chromista; Coast and continental shelf; Corallina officinalis; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Gross photosynthesis rate, oxygen, standard error; Laboratory experiment; Macroalgae; Metabolically induced rate of pH change; Metabolically induced rate of pH change, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard error; pH meter (Orion); Plantae; Primary production/Photosynthesis; Rhodophyllis gunnii; Rhodophyta; Salinity; Schizoseris sp.; Single species; South Pacific; Species; Temperate; Temperature, water; Titration; Ulva sp.; Undaria pinnatifida
    Type: Dataset
    Format: text/tab-separated-values, 480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cornwall, Christopher Edward; Hepburn, Christopher D; McGraw, Christina M; Currie, Kim I; Pilditch, Conrad A; Hunter, Keith A; Boyd, Philip W; Hurd, Catriona L (2013): Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B-Biological Sciences, 280(1772), 20132201-20132201, https://doi.org/10.1098/rspb.2013.2201
    Publication Date: 2024-03-15
    Description: Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH-based for the first time on pH time-series measurements within a kelp forest-would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but ?(13)C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Arthrocardia corymbosa; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcium; Calcium, standard error; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chlorophyll a, standard error; Coast and continental shelf; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Gross photosynthesis rate, oxygen, standard error; Growth/Morphology; Growth rate; Growth rate, standard error; Incubation duration; Karitane; Laboratory experiment; Macroalgae; Magnesium; Magnesium, standard error; Magnesium carbonate, magnesite; Magnesium carbonate, magnesite, standard error; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phycocyanin; Phycocyanin, standard error; Phycoerythrin; Phycoerythrin, standard error; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Recruitment; Recruitment, standard error; Reproduction; Rhodophyta; Salinity; Single species; South Pacific; Species; Temperate; Temperature, water; Treatment; δ13C, inorganic carbon; δ13C, inorganic carbon, standard error; δ13C, organic carbon; δ13C, organic carbon, standard error; δ15N, organic matter; δ15N, organic matter, standard error
    Type: Dataset
    Format: text/tab-separated-values, 1763 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: James, Rebecca K; Hepburn, Christopher D; Cornwall, Christopher Edward; McGraw, Christina M; Hurd, Catriona L (2014): Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Marine Biology, 161(7), 1687-1696, https://doi.org/10.1007/s00227-014-2453-3
    Publication Date: 2024-03-15
    Description: The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Area, standard error; Area in square milimeter; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Community composition and diversity; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Huriawa_Peninsula; Laboratory experiment; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Percentage; Percentage, standard error; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Rocky-shore community; Salinity; South Pacific; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 620 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Roleda, Michael Y; Morris, Jaz N; McGraw, Christina M; Hurd, Catriona L (2011): Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biology, 18(3), 854-864, https://doi.org/10.1111/j.1365-2486.2011.02594.x
    Publication Date: 2024-03-15
    Description: The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages but, critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stress e.g. UV-B radiation, are the most susceptible life-history phase. Also, environmental cues and stressors can cause changes in the sex ratio which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59-8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59-7.60, using HCl-only) caused a significant reduction in germination, while added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of ocean acidification on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) compared to their size (10% increase) under extreme OA (pH 7.61). This study suggests that metabolically-active cells can compensate for the acidification of seawater. This homeostatic function minimises the negative effects of lower pH (high H+ ions) on cellular activity. The 6-9% reduction in germination success under extreme OA suggests that meiospores of M.pyrifera may be resistant to future ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Calculated using SWCO2 (Hunter, 2007); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chromista; Closed cell titration; Coast and continental shelf; Dihydrogen carbonate; Dihydrogen carbonate, standard deviation; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Macroalgae; Macrocystis pyrifera; Macrocystis pyrifera, gametophyte size; Macrocystis pyrifera, gametophyte size, standard deviation; Macrocystis pyrifera, germination rate; Macrocystis pyrifera, germination rate, standard deviation; Macrocystis pyrifera, sex ratio; Macrocystis pyrifera, sex ratio, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (Orion 720A); Reproduction; Salinity; Single species; South Pacific; Temperate; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 447 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Roleda, Michael Y; Cornwall, Christopher Edward; Feng, Yuanyuan; McGraw, Christina M; Smith, Abigail M; Hurd, Catriona L (2015): Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS ONE, 10(10), e0140394, https://doi.org/10.1371/journal.pone.0140394
    Publication Date: 2024-03-15
    Description: Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4*preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily (daytime pH = 8.45, night-time pH = 7.65) and daily (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Area; Area, standard error; Arthrocardia corymbosa; Benthos; Bicarbonate ion; Biogenic silica per chlorophyll a; Biogenic silica per chlorophyll a, standard error; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a/particulate organic carbon ratio; Chlorophyll a/particulate organic carbon ratio, standard error; Coast and continental shelf; Date; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; Karitane; Laboratory experiment; Macroalgae; Magnesium carbonate, magnesite; Magnesium carbonate, magnesite, standard error; Number; Number, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard error; Plantae; Potentiometric; Potentiometric titration; Registration number of species; Rhodophyta; Salinity; Single species; South Pacific; Species; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1488 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: Increased plant biomass is observed in terrestrial systems due to rising levels of atmospheric CO2, but responses of marine macroalgae to CO2 enrichment are unclear. The 200% increase in CO2 by 2100 is predicted to enhance the productivity of fleshy macroalgae that acquire inorganic carbon solely as CO2 (non‐carbon dioxide‐concentrating mechanism [CCM] species-i.e., species without a carbon dioxide‐concentrating mechanism), whereas those that additionally uptake bicarbonate (CCM species) are predicted to respond neutrally or positively depending on their affinity for bicarbonate. Previous studies, however, show that fleshy macroalgae exhibit a broad variety of responses to CO2 enrichment and the underlying mechanisms are largely unknown. This physiological study compared the responses of a CCM species (Lomentaria australis) with a non‐CCM species (Craspedocarpus ramentaceus) to CO2 enrichment with regards to growth, net photosynthesis, and biochemistry. Contrary to expectations, there was no enrichment effect for the non‐CCM species, whereas the CCM species had a twofold greater growth rate, likely driven by a downregulation of the energetically costly CCM(s). This saved energy was invested into new growth rather than storage lipids and fatty acids. In addition, we conducted a comprehensive literature synthesis to examine the extent to which the growth and photosynthetic responses of fleshy macroalgae to elevated CO2 are related to their carbon acquisition strategies. Findings highlight that the responses of macroalgae to CO2 enrichment cannot be inferred solely from their carbon uptake strategy, and targeted physiological experiments on a wider range of species are needed to better predict responses of macroalgae to future oceanic change.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Change; Chlorophyll a; Coast and continental shelf; Craspedocarpus ramentaceus; Dry mass; EXP; Experiment; Fatty acids; Fatty acids, free; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth; Growth/Morphology; Growth rate; Hydrocarbons; Laboratory experiment; Length; Lipids; Lipids, polar; Lomentaria australis; Macroalgae; Monounsaturated fatty acids of total fatty acids; Name; Net photosynthesis rate, oxygen; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phycobiliproteins; Phycocyanin; Phycoerythrin; Plantae; Polyunsaturated fatty acids of total fatty acids; Primary production/Photosynthesis; Registration number of species; Rhodophyta; Salinity; Sample code/label; Saturated fatty acids of total fatty acids; Single species; South Pacific; Species; Sterols; Temperate; Temperature, water; Tinderbox; Trans fatty acids of total fatty acids; Treatment; Triacylglycerols; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 29940 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-12-01
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-04-30
    Print ISSN: 1932-7447
    Electronic ISSN: 1932-7455
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...